
ZORO:
Zack's Open-Row
Oriented Memory
Scheduler
Jack Davidson and
Zackery Painter

Introduction
• The goal was to determine if we can make a better

scheduling algorithm using a predictor

• Originally wanted to predict if we should leave the

page open or close the page after a read / write

• However, decided it would be more appropriate

to predict what we should send from the CPU to

the memory controller

Figure 1 – General idea of ZORO

ZORO
• Important vocabulary

• Transaction Groups – A transaction group is group of

memory transactions that are in the same row

• ZORO Buffer – The location that transactions go before

being grouped and sent to the memory controller

• Buffer Check – The process of grouping and releasing

transactions from the buffer

• Max Retries – The maximum number of ZORO

iterations a transaction can live in the ZORO buffer

before being sent regardless of row

ZORO
• How does ZORO work?

• ZORO aims to take advantage of FR-FCFS by always

attempting to send groups of memory transactions

that are in the current row

• When a new transaction is received:

• Calculate transaction’s row

• Compare to last known opened row

• If equal, send to memory controller

• Otherwise, put in ZORO buffer

• Run a buffer check

• On each clock cycle

• Run a buffer check

Simulations
• Gem5 with a side of DRAMsim3

• Put it in the oven for 100 iterations

• Gives a good balance of command flavor and

runtime spice

• We stuck to the standard Coremark workload,

didn't have time to experiment with other

benchmark recipes

• Tried a few different cache sizes to increase the

number of memory transactions and expand out

palates

Simulations
• Why DRAMSim3?

• Interfaced “nicely” with GEM5

• Very easy to change and look at source code

• More accurate then GEM5’s DRAM modules

• Very short compile time

• Why GEM5?

• Very robust and easy to create workloads for

• Very well documented on their website

• Optimized compiler and well commented code

Simulations
(Additional details)

• DRAM: DDR4_8Gb_x8_2400

• CPU: O3CPU (Basic Out-of-Order CPU)

• Default Cache size:

• L1d - 64kB

• L1i – 32kB

• L2 – 2MB

• L3 – 16MB

We got…

Data

(lots of data)

15 data files x 10 folders = 150 data files!

(Not even including testing data and text files!)

Results Overview:
• Row hit rate did what we expected when cache

was normal, less so for the smaller configs

• Energy also did what we expected for the initial

setup

• The Baseline hit rate did some strange things,

crossing over read/write as cache decreases

Activation Energy Results
(Default cache)

• The left shows our

activation energy using

ZORO as we change the

max retries variable

• Notice an interesting

trend!

Blue line – ZORO results
Orange line – Baseline results (unmodified)

Our best value at Max Retries = 3
was 2.93%!

Average Read Latency Results
(Default Cache)

• Shows the overall read

latency plotted against the

ZORO max retries

parameter

• Overall, ZORO seems to

perform better for every

value of max retries than

the baseline

Total Energy
(Default Cache)

1.29E+10

1.29E+10

1.29E+10

1.29E+10

1.29E+10

1.29E+10

1.29E+10

1.29E+10

0 2 4 6 8 10 12 14 16
T

o
ta

l
E

n
e

rg
y

(p
J)

Max Retries

Total Energy Vs Max Retries

Default

Baseline (No ZORO)

• Overall, less total energy than
Baseline!

Memory Row Hit Rate Improvement Results
(Default Cache)

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H
it

 R
a

te
 D

if
fe

re
n

c
e

 f
ro

m
 D

e
fa

u
lt

 (
%

)

Max Retries

Memory Row Hit Rate Improvement vs Max Retries at Default Cache Size

Read Hit Rate Write Hit Rate

What about smaller cache sizes?

-15

-10

-5

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H
it

 R
a

te
 D

if
fe

re
n

c
e

 f
ro

m
 D

e
fa

u
lt

(%

)

Max Retries

Memory Row Hit Rate Improvement vs Max
Retries at 1/2 of the Default Cache Size

Read Hit Rate Write Hit Rate
-0.2

-0.15

-0.1

-0.05

0

0.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H
it

 R
a

te
 D

if
fe

re
n

c
e

 f
ro

m
 D

e
fa

u
lt

(%

)

Max Retries

Memory Row Hit Rate Improvement vs Max
Retries at 1/256 of the Default Cache Size

Read Hit Rate Write Hit Rate

70

75

80

85

90

95

100

Default
Cache

Cache/2 Cache/4 Cache/8 Cache/16 Cache/32 Cache/64 Cache/128 Cache/256

R
o

w
 H

it
 R

a
te

 (
%

)

Cache Size

Memory Row Hit Rate of Default Gem5 Configuration

Read Hit Rate Write Hit Rate

• Baseline Gem5 configuration
behaved strangely as cache size
decreased.

• Provides some indication as to
why ZORO didn’t perform as well

• About 7% improvement overall

-15

-10

-5

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H
it

 R
a

te
 D

if
fe

re
n

c
e

 f
ro

m
 D

e
fa

u
lt

 (
%

)

Max Retries

Memory Row Hit Rate Improvement vs Max Retries at 1/2
of the Default Cache Size

Read Hit Rate Write Hit Rate

Future
Work

• Modify ZORO to potentially improve performance

with more complex row tracking

• Would have liked to have done more than a single

benchmark

• Try different DRAM configurations, not just the

single one we did

• Should also go up in cache size to determine if

there are any changes

• We need to take into account CPU metrics instead

of just the DRAM metrics

• Also would have liked to have a physical

implementation of ZORO

Conclusions
• ZORO takes advantage of FR-FCFS by quickly

scheduling transactions that are already in an open

row

• ZORO could possibly save energy while having

similar performance or even providing a small

increase

• ZORO does not work well for lower cache sizes

because it ends up being less efficient than simple

scheduling

Related
Work

• Hurr and C. Lin did some work trying to implement

a history-based predictor as a scheduling

mechanism for the memory controller

This differed from what we did because we aimed to

change how the CPU schedules memory transactions

References
[1] Hur and C. Lin, "Adaptive History-Based Memory Schedulers

for Modern Processors," in IEEE Micro, vol. 26, no. 1, pp. 22-29,

Jan.-Feb. 2006, doi: 10.1109/MM.2006.1.

[2] J. Lowe-Power et al., “The gem5 Simulator: Version 20.0+”,

arXiv [cs.AR]. 2020.

[3] S. Li, Z. Yang, D. Reddy, A. Srivastava and B. Jacob,

"DRAMsim3: a Cycle-accurate, Thermal-Capable DRAM

Simulator," in IEEE Computer Architecture Letter

Questions?

Where’d we get
the data?

• Hit rate: # row hits / # commands

• Energy: Output from DRAMSim3

• Read latency: Output from DRAMSim3

What else could
we do with our
data?

• Plot latencies for different values of max retries

• Would be difficult to demonstrate graphically

• Latency data for reads, writes, and interarrival

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1
2

3
4

5
6

7
8

9

10
11

12

13

14

15
Latency Categories (cycles)

N
u

m
b

e
r

o
f

R
e

a
d

 C
o

m
m

a
n

d
s

Max Retries

Number of Read Commands vs Read Latency Category and Max Retries

0-500 500-1000 1000-1500 1500-2000 2000-2500 2500-3000 3000-3500 3500-4000 4000-4500

