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ABSTRACT 

Conventional memory scheduling takes 

advantage of the row currently open in 

memory by prioritizing memory requests in 

that row. Only if there are no more memory 

requests for the open row does memory switch 

to another row, based on the oldest memory 

request in the queue. This First-Ready-First-

Come-First-Serve (FR-FCFS) scheduling is 

standard in modern processors. This paper 

aims to take advantage of FR-FCFS by 

implementing a memory scheduler that 

prioritizes same-row memory requests sent 

from the memory controller – ZORO.  

We found a slight improvement in activation 

energy and read latency for larger cache sizes 

but found minimal changes in row hits for all 

cache sizes. For smaller cache sizes, our 

results were worse for all metrics we recorded. 

INTRODUCTION 

As processor performance continues to 

improve at a faster pace than memory 

performance, memory becomes an increasing 

barrier to maximal performance (commonly 

known as the memory wall problem). Our 

proposal is to use a buffer to complement an 

FR-FCFS scheduling policy in an attempt to 

mitigate this issue.  

IMPLEMENTATION 

In a FR-FCFS scheduler the memory requests 

that are for the DRAM row that is currently 

charged are handled prior to ones that are not, 

hence the “first ready” part of the name. This 

situation is the best-case scenario as row pre-

charge time can be ignored, leading to lower 

latencies and less time with a processor or 

thread waiting for data to continue operations.  

We can improve this by re-ordering requests 

in the CPU before submitting a transaction to 

the memory controller. ZORO achieves this 

by speculating the current open row in the 

memory controller and only scheduling 

transactions that are known to be in that row. 

ZORO speculates the current open row by 

recording the last known row that was opened 

and assuming that the memory controller still 

has this row open. When we begin issuing 

requests for a different row, the stored row 

updates and ZORO continues its search. This 

takes advantage of the “first ready” portion of 

the FR-FCFS because the memory controller 

should immediately issue transactions in the 

currently opened row.  

The main problem of this approach comes 

with memory requests that are outside of the 

current row. If we don’t provide the data the 

processor needs then it must wait, wasting 

precious power and compute cycles. Our 

solution is to track the age of each request in 

our buffer and to issue these requests once 

they reach a certain age, even if the transaction 

isn’t in the currently opened row. We will 

discuss this further in the analysis of our 

results.  
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Figure 1- ZORO's new Transaction handler. ZORO 

always checks for additional transactions that it can 

send on receiving a new transaction. 

 

Figure 2 - On each clock cycle we run a buffer check 

to send any transactions that are in the speculated 

row. We also send any transactions that have 

exceeded the max retries allowed.  If the transaction 

isn't in the row, the max retries counter increments. 

 

Figure 3 - A zoomed in view of the ZORO buffer 

check 

SIMULATIONS 

Our primary goal was to increase the number 

of same-row memory accesses. To measure 

this, we used DRAMsim3, which provides 

many statistics such as the number of read and 

write commands it received, and how many of 

them had various ranges of latencies. We used 

gem5 for our CPU simulator primarily due to 

its ability to easily integrate DRAMsim3[2] 

[3]. Our benchmark of choice was EEMBC 

Coremark as it provides a variety of realistic 

workloads (list processing, matrix 

manipulation, state machine validation, and 

CRC) as well as a variety of configuration 

options.  

Gem5 allows for a variety of CPU models to 

be implemented. We ran our simulations 

primarily with the TimingSimpleCPU and 

O3CPU options [2]. Our initial testing was 

done with TimingSimple model as the O3CPU 

has a tendency to fail with errors when left 

running for long periods of time. To mitigate 

this error, we ran Coremark with a set number 

of iterations smaller than the default option of 

400000. Our initial O3CPU testing showed 

almost no difference between 100 iterations 

and 2500 iterations of Coremark. This is 

because the data that Coremark is operating on 

was already in the cache, and DRAMSim3 

handles main memory, which is what we 
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wanted to look at [3]. This was not an issue 

with TimingSimple as it does not require the 

use of caches. We decided to use 100 

Coremark iterations for the remainder of our 

testing because of this. 100 iterations provided 

a balance between simulation time and 

number of DRAM commands performed. 

After we noticed no difference in the number 

of main memory transactions with the increase 

in iterations in Coremark, we decided to 

change the cache size to force the number of 

memory transactions to increase. This was 

important because it would allow us to better 

see the differences in the results of ZORO. We 

do understand that this isn’t ideal, and not a 

very realistic way to get a result, but for our 

purposes it was necessary.  

In order to simulate a more memory intensive 

benchmark, we changed the size of the cache 

available to the O3CPU model. While this is 

not a perfect solution, it increases the number 

of memory transactions that take place to 

provide variation to our data.  

RESULTS 

While analyzing the data, we found interesting 

results in energy consumption, latency, and 

row hit rate. We noticed that for the default 

cache configuration, we did slightly better 

than the baseline in most of our data. 

However, as the cache size decreased, we had 

a much worse performance than the baseline. 

An example of this is visible in Figure 4, 

which shows the activation energy across 

multiple different max retry values. The figure 

shows that for the lower max retry values we 

actually have a lower activation energy than 

the baseline parameters. For larger values of 

max retries, we use more energy than the 

baseline. We argue that this isn’t an issue 

because the we can adjust max retries to give 

us best results. However, as mentioned above, 

as we decrease the cache size, we use more 

activation energy than the baseline regardless 

of the max retry value. This is shown in Figure 

5, which was captured with 1/256th the 

baseline cache size across all max retry values.  

The read latency with ZORO is lower than the 

baseline for each value of max retries. The 

lowest latency was around 8 max retries. This 

is different than the activation energy, which 

was lowest around 3 max retries. This is 

represented in figure 9 below, which shows 

the read latency for a smaller cache. As 

shown, we have a higher latency than the 

baseline. This also shows the decrease in 

performance as the cache size decreases. We 

anticipate that this is due to an oversight in 

ZORO that withholds non-same-row requests 

until the max retries value has been met. Given 

more time, this would be the first concern to 

address. 

Read and write row hit rates both tended to 

drop as max retries increased, shown in 

figures 6 and 7. The highest improvement 

ZORO achieved over the baseline in the 

default cache size was 0.22% at 2 max retries 

for read hit rate, and 0.91% at 6 max retries for 

write hit rate.  

We noticed that as cache size decreases, the 

hit rate begins to drop below that of the 

baseline, similarly to latency. We anticipate 

the root cause is the same.  

Another interesting observation from the hit 

rates as cache size decreases comes from the 

unmodified gem5 behavior. Read and write hit 

rate cross over twice, then converge towards 

100% as show in figure 10. This convergence 

is due to operands being constantly 

overwritten, to the point where the victim 

cache cannot keep up.  This results in many 

operations happenings within the same row 

for a single set of calculations. 
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Figure 4- Activation Energy vs Max Retries. As shown in this figure, our lower values of max retries have a 

lower activation energy than the baseline. After 10 max retries we actually use more energy than the baseline. 

This is for the default cache configuration. 

 

Figure 5 - Activation Energy vs max retries for 1/256th the default cache size. As shown, for every max-retry 

value we use more energy than the baseline value. 
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Figure 6 – Row hit rate for memory reads and writes vs max retries for the default cache size, normalized to 

the baseline row hit rate. As max retries increases row hit rate tends to decrease.  

 

 

Figure 7 – Row hit rate for memory reads and writes vs max retries for 1/2 of the default cache size, normalized 

to the baseline row hit rate. The read hit rate and write hit rate almost cancel each other out.  
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Figure 8 – Row hit rate for memory reads and writes vs max retries for the  1/4th of the default cache size, 

normalized to the baseline row hit rate. As max retries increases write hit rate tends to decrease, while read hit 

rate stays more consistent. Both read and write tend to be below the baseline. 

 

 

Figure 9 – Row hit rate for memory reads and writes vs max retries for the  1/256th of the default cache size, 

normalized to the baseline row hit rate. As max retries increases row hit rate tends to decrease. 
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Figure 10 – Row hit rate for memory reads and writes vs cache size for the default gem5 configuration. 

 

 

Figure 11 – Average read latency vs max retries plotted for the default cache size. Also plotted is the baseline 

read latency without ZORO for the default cache size. 
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Figure 12 -   Average read latency vs max retries for 1/256th the default cache size. As shown, our latencies are 

much higher than the baseline 1/256th cache size simulation without ZORO.  

 

 

Figure 13 - Activation Energy VS Max Retries for a cache size of Default/4. As shown, even with a significantly 

larger cache size than the 1/256th cache, we still    have a higher total max energy than the unmodified baseline 

system. 
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Figure 14 – Average Read Latency for 1/4th the default cache. As shown from this figure, with 1/4th the cache 

size we still have a lower read latency for most of the max retries values
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CONCLUSION 

ZORO is a CPU memory scheduling 

algorithm that seeks to take advantage of 

memory controllers that use FR-FCFS. This is 

done by grouping together transactions that 

are in the same row and sending the groups to 

the memory controller when we speculate that 

they are in the currently opened row. 

ZORO was able to provide some benefits for 

GEM5’s default cache sizes[2]. We were able 

to achieve a slightly better row hit rate and 

activation energy for lower values of our max 

retries parameter. Activation energy being 

about 3% better and row hit rate only being 

about 1% better for reads and 0.25% better for 

writes. However, as we changed the default 

cache size these numbers changed so that we 

had more energy and a lower hit rate. 

We conclude that our ZORO algorithm, while 

not making much of a difference in the 

number of row hits, does save a considerable 

amount of energy in DRAM. Though, we 

would like to note that we did not take into 

account total energy of the system. We also 

conclude that we can improve our latency 

slightly with this algorithm as well as shown 

above. 

FUTURE WORK 

Running a larger variety of simulations, 

benchmarks, and memory configurations 

would give better perspective on the potential 

this system has to offer. We had trouble 

running simulations aside from Coremark 

with gem5, but this would be the first major 

step. More benchmarks would give a better 

perspective on how ZORO affects 

performance in various workloads. We 

anticipate that memory intensive workloads 

would have the highest benefit from this 

system. Our results are only simulated for a 

single DRAM configuration, 8 GB of DDR4 

(DDR4_8Gb_x8_3200.ini from DRAMsim3). 

Different memory configurations could 

indicate applications where ZORO could 

thrive, as well as where it would be a waste of 

area for the difference in performance.  

If there is promise to this system, the next step 

would be to improve the algorithm. The first 

step is to implement more similar logic to FR-

FCFS. In its current state, ZORO will wait 

until the Max Retries value has been met 

before issuing a memory request, even if a full 

sweep of the buffer has shown there are no 

same-row requests. We anticipate that this 

would mitigate the decrease in performance 

compared to the baseline as the cache size 

shrinks. The next step is to track how many 

same-row memory requests have been issued 

in order to predict the row that DRAM has 

charged even after we have begun sending 

requests from a different row. Say ZORO send 

5 requests to row A, then send 2 requests to 

row B. If it sees another request in row A, 

DRAM will likely still be handling the row A 

requests and can still push this request via the 

FR policy.  

Our results are solely based on simulations as 

we did not have the time to attempt 

implementation of a physical system. A 

physical implementation of ZORO would 

allow for analysis of area as well as power and 

performance, providing better indication of 

the potential for this system in a commercial 

processor. 

Additionally, we did not do any thermal 

analysis from DRAM or the CPU. In the 

future, we would attempt to do this to see if 

ZORO has any effect on the heat generated 

both in simulated models and in the physical 

implementation

RELATED WORK 

We found some related work on the subject of 

predictive memory schedulers by Hurr and C. 

Lin [1]. Their work was a bit different and 

sought to change the memory scheduler on the 

memory controller instead of editing the 

transactions coming from the CPU. 

Additionally, they did a more standard 



11 

 

prediction algorithm. This is in contrast to our 

ZORO algorithm that uses grouping and a 

very simple prediction to determine what 

transactions get sent from the CPU.  
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