
1

ZORO – Zack’s Open Row Oriented Memory Request Scheduler

Jack Davidson Zackery Painter

Electrical and Computer Engineering

Rose-Hulman Institute of Technology

davidsjt@rose-hulman.edu painteza@rose-hulman.edu

ABSTRACT

Conventional memory scheduling takes

advantage of the row currently open in

memory by prioritizing memory requests in

that row. Only if there are no more memory

requests for the open row does memory switch

to another row, based on the oldest memory

request in the queue. This First-Ready-First-

Come-First-Serve (FR-FCFS) scheduling is

standard in modern processors. This paper

aims to take advantage of FR-FCFS by

implementing a memory scheduler that

prioritizes same-row memory requests sent

from the memory controller – ZORO.

We found a slight improvement in activation

energy and read latency for larger cache sizes

but found minimal changes in row hits for all

cache sizes. For smaller cache sizes, our

results were worse for all metrics we recorded.

INTRODUCTION

As processor performance continues to

improve at a faster pace than memory

performance, memory becomes an increasing

barrier to maximal performance (commonly

known as the memory wall problem). Our

proposal is to use a buffer to complement an

FR-FCFS scheduling policy in an attempt to

mitigate this issue.

IMPLEMENTATION

In a FR-FCFS scheduler the memory requests

that are for the DRAM row that is currently

charged are handled prior to ones that are not,

hence the “first ready” part of the name. This

situation is the best-case scenario as row pre-

charge time can be ignored, leading to lower

latencies and less time with a processor or

thread waiting for data to continue operations.

We can improve this by re-ordering requests

in the CPU before submitting a transaction to

the memory controller. ZORO achieves this

by speculating the current open row in the

memory controller and only scheduling

transactions that are known to be in that row.

ZORO speculates the current open row by

recording the last known row that was opened

and assuming that the memory controller still

has this row open. When we begin issuing

requests for a different row, the stored row

updates and ZORO continues its search. This

takes advantage of the “first ready” portion of

the FR-FCFS because the memory controller

should immediately issue transactions in the

currently opened row.

The main problem of this approach comes

with memory requests that are outside of the

current row. If we don’t provide the data the

processor needs then it must wait, wasting

precious power and compute cycles. Our

solution is to track the age of each request in

our buffer and to issue these requests once

they reach a certain age, even if the transaction

isn’t in the currently opened row. We will

discuss this further in the analysis of our

results.

mailto:davidsjt@rose-hulman.edu
mailto:painteza@rose-hulman.edu

2

Figure 1- ZORO's new Transaction handler. ZORO

always checks for additional transactions that it can

send on receiving a new transaction.

Figure 2 - On each clock cycle we run a buffer check

to send any transactions that are in the speculated

row. We also send any transactions that have

exceeded the max retries allowed. If the transaction

isn't in the row, the max retries counter increments.

Figure 3 - A zoomed in view of the ZORO buffer

check

SIMULATIONS

Our primary goal was to increase the number

of same-row memory accesses. To measure

this, we used DRAMsim3, which provides

many statistics such as the number of read and

write commands it received, and how many of

them had various ranges of latencies. We used

gem5 for our CPU simulator primarily due to

its ability to easily integrate DRAMsim3[2]

[3]. Our benchmark of choice was EEMBC

Coremark as it provides a variety of realistic

workloads (list processing, matrix

manipulation, state machine validation, and

CRC) as well as a variety of configuration

options.

Gem5 allows for a variety of CPU models to

be implemented. We ran our simulations

primarily with the TimingSimpleCPU and

O3CPU options [2]. Our initial testing was

done with TimingSimple model as the O3CPU

has a tendency to fail with errors when left

running for long periods of time. To mitigate

this error, we ran Coremark with a set number

of iterations smaller than the default option of

400000. Our initial O3CPU testing showed

almost no difference between 100 iterations

and 2500 iterations of Coremark. This is

because the data that Coremark is operating on

was already in the cache, and DRAMSim3

handles main memory, which is what we

3

wanted to look at [3]. This was not an issue

with TimingSimple as it does not require the

use of caches. We decided to use 100

Coremark iterations for the remainder of our

testing because of this. 100 iterations provided

a balance between simulation time and

number of DRAM commands performed.

After we noticed no difference in the number

of main memory transactions with the increase

in iterations in Coremark, we decided to

change the cache size to force the number of

memory transactions to increase. This was

important because it would allow us to better

see the differences in the results of ZORO. We

do understand that this isn’t ideal, and not a

very realistic way to get a result, but for our

purposes it was necessary.

In order to simulate a more memory intensive

benchmark, we changed the size of the cache

available to the O3CPU model. While this is

not a perfect solution, it increases the number

of memory transactions that take place to

provide variation to our data.

RESULTS

While analyzing the data, we found interesting

results in energy consumption, latency, and

row hit rate. We noticed that for the default

cache configuration, we did slightly better

than the baseline in most of our data.

However, as the cache size decreased, we had

a much worse performance than the baseline.

An example of this is visible in Figure 4,

which shows the activation energy across

multiple different max retry values. The figure

shows that for the lower max retry values we

actually have a lower activation energy than

the baseline parameters. For larger values of

max retries, we use more energy than the

baseline. We argue that this isn’t an issue

because the we can adjust max retries to give

us best results. However, as mentioned above,

as we decrease the cache size, we use more

activation energy than the baseline regardless

of the max retry value. This is shown in Figure

5, which was captured with 1/256th the

baseline cache size across all max retry values.

The read latency with ZORO is lower than the

baseline for each value of max retries. The

lowest latency was around 8 max retries. This

is different than the activation energy, which

was lowest around 3 max retries. This is

represented in figure 9 below, which shows

the read latency for a smaller cache. As

shown, we have a higher latency than the

baseline. This also shows the decrease in

performance as the cache size decreases. We

anticipate that this is due to an oversight in

ZORO that withholds non-same-row requests

until the max retries value has been met. Given

more time, this would be the first concern to

address.

Read and write row hit rates both tended to

drop as max retries increased, shown in

figures 6 and 7. The highest improvement

ZORO achieved over the baseline in the

default cache size was 0.22% at 2 max retries

for read hit rate, and 0.91% at 6 max retries for

write hit rate.

We noticed that as cache size decreases, the

hit rate begins to drop below that of the

baseline, similarly to latency. We anticipate

the root cause is the same.

Another interesting observation from the hit

rates as cache size decreases comes from the

unmodified gem5 behavior. Read and write hit

rate cross over twice, then converge towards

100% as show in figure 10. This convergence

is due to operands being constantly

overwritten, to the point where the victim

cache cannot keep up. This results in many

operations happenings within the same row

for a single set of calculations.

4

Figure 4- Activation Energy vs Max Retries. As shown in this figure, our lower values of max retries have a

lower activation energy than the baseline. After 10 max retries we actually use more energy than the baseline.

This is for the default cache configuration.

Figure 5 - Activation Energy vs max retries for 1/256th the default cache size. As shown, for every max-retry

value we use more energy than the baseline value.

5

Figure 6 – Row hit rate for memory reads and writes vs max retries for the default cache size, normalized to

the baseline row hit rate. As max retries increases row hit rate tends to decrease.

Figure 7 – Row hit rate for memory reads and writes vs max retries for 1/2 of the default cache size, normalized

to the baseline row hit rate. The read hit rate and write hit rate almost cancel each other out.

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H
it

 R
at

e
D

if
fe

re
n

ce
 f

ro
m

 D
ef

au
lt

 (
%

)

Max Retries

Memory Row Hit Rate Improvement vs Max Retries at
Default Cache Size

Read Hit Rate Write Hit Rate

-15

-10

-5

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H
it

 R
at

e
D

if
fe

re
n

ce
 f

ro
m

 D
ef

au
lt

 (
%

)

Max Retries

Memory Row Hit Rate Improvement vs Max Retries at 1/2
of the Default Cache Size

Read Hit Rate Write Hit Rate

6

Figure 8 – Row hit rate for memory reads and writes vs max retries for the 1/4th of the default cache size,

normalized to the baseline row hit rate. As max retries increases write hit rate tends to decrease, while read hit

rate stays more consistent. Both read and write tend to be below the baseline.

Figure 9 – Row hit rate for memory reads and writes vs max retries for the 1/256th of the default cache size,

normalized to the baseline row hit rate. As max retries increases row hit rate tends to decrease.

-2

-1.5

-1

-0.5

0

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H
it

 R
at

e
D

if
fe

re
n

ce
 f

ro
m

 D
ef

au
lt

 (
%

)

Max Retries

Memory Row Hit Rate Improvement vs Max Retries at 1/4
of the Default Cache Size

Read Hit Rate Write Hit Rate

-0.2

-0.15

-0.1

-0.05

0

0.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H
it

 R
at

e
D

if
fe

re
n

ce
 f

ro
m

 D
ef

au
lt

 (
%

)

Max Retries

Memory Row Hit Rate Improvement vs Max Retries at
1/256 of the Default Cache Size

Read Hit Rate Write Hit Rate

7

Figure 10 – Row hit rate for memory reads and writes vs cache size for the default gem5 configuration.

Figure 11 – Average read latency vs max retries plotted for the default cache size. Also plotted is the baseline

read latency without ZORO for the default cache size.

70

75

80

85

90

95

100

R
o

w
 H

it
 R

at
e

(%
)

Cache Size

Memory Row Hit Rate of Default Gem5 Configuration

Read Hit Rate Write Hit Rate

8

Figure 12 - Average read latency vs max retries for 1/256th the default cache size. As shown, our latencies are

much higher than the baseline 1/256th cache size simulation without ZORO.

Figure 13 - Activation Energy VS Max Retries for a cache size of Default/4. As shown, even with a significantly

larger cache size than the 1/256th cache, we still have a higher total max energy than the unmodified baseline

system.

4350000

4400000

4450000

4500000

4550000

4600000

4650000

4700000

0 2 4 6 8 10 12 14 16

A
ct

iv
at

io
n

 E
n

e
rg

y
(p

J)

Max Retries

Activation Energy vs Max Retries (Default / 4)

ZORO Default Cache /4 Baseline Default / 4

9

Figure 14 – Average Read Latency for 1/4th the default cache. As shown from this figure, with 1/4th the cache

size we still have a lower read latency for most of the max retries values

30.8

31

31.2

31.4

31.6

31.8

32

32.2

0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 R
e

ad
 L

at
e

n
cy

 (
cy

cl
e

s)

Max Retries

Average Read Latency Default / 4

ZORO Default /4 Default / 4 Baseline

10

CONCLUSION

ZORO is a CPU memory scheduling

algorithm that seeks to take advantage of

memory controllers that use FR-FCFS. This is

done by grouping together transactions that

are in the same row and sending the groups to

the memory controller when we speculate that

they are in the currently opened row.

ZORO was able to provide some benefits for

GEM5’s default cache sizes[2]. We were able

to achieve a slightly better row hit rate and

activation energy for lower values of our max

retries parameter. Activation energy being

about 3% better and row hit rate only being

about 1% better for reads and 0.25% better for

writes. However, as we changed the default

cache size these numbers changed so that we

had more energy and a lower hit rate.

We conclude that our ZORO algorithm, while

not making much of a difference in the

number of row hits, does save a considerable

amount of energy in DRAM. Though, we

would like to note that we did not take into

account total energy of the system. We also

conclude that we can improve our latency

slightly with this algorithm as well as shown

above.

FUTURE WORK

Running a larger variety of simulations,

benchmarks, and memory configurations

would give better perspective on the potential

this system has to offer. We had trouble

running simulations aside from Coremark

with gem5, but this would be the first major

step. More benchmarks would give a better

perspective on how ZORO affects

performance in various workloads. We

anticipate that memory intensive workloads

would have the highest benefit from this

system. Our results are only simulated for a

single DRAM configuration, 8 GB of DDR4

(DDR4_8Gb_x8_3200.ini from DRAMsim3).

Different memory configurations could

indicate applications where ZORO could

thrive, as well as where it would be a waste of

area for the difference in performance.

If there is promise to this system, the next step

would be to improve the algorithm. The first

step is to implement more similar logic to FR-

FCFS. In its current state, ZORO will wait

until the Max Retries value has been met

before issuing a memory request, even if a full

sweep of the buffer has shown there are no

same-row requests. We anticipate that this

would mitigate the decrease in performance

compared to the baseline as the cache size

shrinks. The next step is to track how many

same-row memory requests have been issued

in order to predict the row that DRAM has

charged even after we have begun sending

requests from a different row. Say ZORO send

5 requests to row A, then send 2 requests to

row B. If it sees another request in row A,

DRAM will likely still be handling the row A

requests and can still push this request via the

FR policy.

Our results are solely based on simulations as

we did not have the time to attempt

implementation of a physical system. A

physical implementation of ZORO would

allow for analysis of area as well as power and

performance, providing better indication of

the potential for this system in a commercial

processor.

Additionally, we did not do any thermal

analysis from DRAM or the CPU. In the

future, we would attempt to do this to see if

ZORO has any effect on the heat generated

both in simulated models and in the physical

implementation.

RELATED WORK

We found some related work on the subject of

predictive memory schedulers by Hurr and C.

Lin [1]. Their work was a bit different and

sought to change the memory scheduler on the

memory controller instead of editing the

transactions coming from the CPU.

Additionally, they did a more standard

11

prediction algorithm. This is in contrast to our

ZORO algorithm that uses grouping and a

very simple prediction to determine what

transactions get sent from the CPU.

REFERENCES

 [1.] Hur and C. Lin, "Adaptive History-Based

Memory Schedulers for Modern Processors,"

in IEEE Micro, vol. 26, no. 1, pp. 22-29, Jan.-

Feb. 2006, doi: 10.1109/MM.2006.1.

[2] J. Lowe-Power et al., “The gem5

Simulator: Version 20.0+”, arXiv

[cs.AR]. 2020.

[3] S. Li, Z. Yang, D. Reddy, A. Srivastava

and B. Jacob, "DRAMsim3: a Cycle-accurate,

Thermal-Capable DRAM Simulator," in IEEE

Computer Architecture Letter

12

STATEMENT OF WORK

 Initial

Simulations

Progress

Reports

System

Modifications

Simulations Final report

Jack Davidson 55 40 20 70 60

Zackery Painter 45 60 80 30 40

Signed, Zackery A. Painter & Jack Davidson

