

RHIPS- Extended™ Final Report

Team 1F

Computer Architecture

Zackery Painter

2/20/2021

Contents
Brief Introduction.. 3

In-depth Explanation ... 3

Implementation decisions ... 4

Final Comments on Design Choices ... 4

Extras .. 5

Conclusion .. 9

APPENDIX – DESIGN JOURNAL ... 10

Special Notes .. 12

Executive Summary .. 12

Basic Overview ... 13

Register and Memory Layout: .. 33

Multi-Cycle RTL .. 38

RTL “Parts List”: .. 47

RTL Error Checking Methods (Taken from original RHIPS doc): .. 48

Control Bit descriptions .. 49

Testing and Verification ... 51

Finite State Diagram – General Control ... 56

ALU Control Diagram .. 57

Timing ... 57

APPENDIX – DESIGN JOURNAL – ZACKERY PAINTER .. 58

APPENDIX – TESTS ... 65

APPENDIX – PROOF OF RESULTS ... 66

Brief Introduction

 RHIPS-Extended™ is an extension of the RHIPS™ processor created by John Neill,

Zack Painter, Anthony Sparks, and Jack Thorp for Computer Architecture in the Fall of 2020 at

Rose-Hulman Institute of Technology. The extended version is a 16 bit multicycle processor.

The processor has 16 bit data addresses and 4-but register address bus. All data buses are 16 bit.

In-depth Explanation
 Testing

THE PROCESSOR WAS IMPLEMENTED BY TESTING COMPONENTS INDIVIDUALLY,

TESTING SUB-SECTIONS, AND TESTING THE FINAL DATAPATH.

• Component testing

o Each component was tested according to the design document.

o After testing, multiple components were put together to make a full

subsection.

• Sub-section testing

o After components were tested, the components were put together

and tested in subsections defined in the design document

o After the subsections were tested, a symbol was created from the

subsection and added to the final processor.

• Final processor

o The final subsection (section F) was the final processor.

o The final processor was comprised of 3 subsections and connected

on the high-level schematic diagram.

 Instruction Set Design

 The instruction set was originally designed with 4 bit opcodes to get a total of 16

instructions. However, after running out of instructions, it was decided to take 2 of the opcodes

and make a 3-bit ext code to make a total of 16 additional instructions. This gave a total of 32

instructions possible. To accommodate the new instruction types, it was decided to use the

branch instruction opcodes because they are pseudo-instructions. The new type is below.

Implementation decisions
 The implementation plan was to split the data path into 5 sections.

A. Section A was the Instruction Memory and the Data Memory, as well as the memory

management and switching logic.

B. Section B was divided into Section B1 and B2

a. B1 was the main register file and input muxes

b. B2 was the kernel register file and the input muxes

C. Section C was the combination of B1 and B2, along with switching logic on the output

of the output of both register files.

D. Section D was the input registers to the ALU, the ALU and the result registers.

E. Section E was the combination of section D and C

F. Section F was the entire processor, including PC logic and Sections A-E

The final processor was comprised of subsections A, BC and D. This made it easier to test and

connect together. It also made it cleaner in the upper-level data path.

Final Comments on Design Choices
 Overall, the design is good and was simple to implement. The current design allows for

the implementation and expansion of the kernel and a future operating system. User modes and

Kernel modes are supported through switching physically between 2 separate register files.

Additionally, the future ability to read instructions directly out of the data memory can expand

the number of programs that can run on this processor. However, this leads to some security

issues that would need to be addressed through hardware changes. This leads to additional

changes that should be made, including making branch more efficient, as at the moment it takes

3 instructions to branch.

Extras

Assembler

The assembler takes an assembly program, strips all comments and most spaces, and

turns the instruction into machine code. It also has a configuration file defining types,

instructions, and registers. This file gets loaded into a lookup table and directly assembled into

the complete instruction.

The assembler has two major features. First, it gives a side-by-side view of the instruction

and machine code. This was important because it made it easier to debug any errors in the

waveform. Second, it gave the option to splice a pre-assembled kernel into a final memory file to

be loaded into Xilinx.

Below is an example of both

Figure 1- Side-By-Side Non-spliced – Replrime

Figure 2- Final file - With kernel spliced in – Relprime

Kernel

 The kernel is very basic, but can be improved in the future. The kernel handles simple

exceptions and basic software and hardware interrupts. The kernel has an “idle loop” at address

zero. At this loop, the processor waits for an interrupt to start the program at the end of the

kernel. The assembler automatically decides where the main loop starts based on how big the

kernel is. The interrupt handler is always at address 0x4. The design document provides details

of kernel specific registers. To return from the kernel, it can use the instruction retkern, but this is

not included in the main RTL.

Figure 3- Kernel side-by-side

Conclusion

 RHIPS-Extended™ is a Load Store processor with the capabilities to have a full kernel

and user mode. Additionally, it is flexible enough that changes can be made easily without

breaking the underlying instruction set. In the future, various timing improvements could be

made to increase performance and efficiency. For example, doing multiple setup steps at once

before writing into the register files. Overall, this is a very versatile processor with many

capabilities.

APPENDIX – DESIGN JOURNAL

RHIPS- Extended™ Processor Design
By: Zackery Painter

1/11/2021

Special Notes .. 12

Executive Summary .. 12

Basic Overview ... 13

Instruction Types: ... 13

Full Instruction Set List: ... 14

Syntax and Semantics – Real Instructions: ... 15

Syntax and Semantics – Pseudo-Instructions: .. 33

Register and Memory Layout: .. 33

Main Registers: ... 33

Kernel Registers: ... 34

Data Memory Layout: ... 35

Instruction Memory .. 36

K register convensions: ... 37

Memory Allocation Notes: ... 37

Multi-Cycle RTL .. 38

RelPrime – Assembled .. 40

Additional Code Examples: .. 42

Assembler ... 45

RTL “Parts List”: .. 47

RTL Error Checking Methods (Taken from original RHIPS doc): .. 48

Control Bit descriptions .. 49

Testing and Verification ... 51

Implementation in Xilinx: ... 51

Unit Testing: ... 51

Hardware Integration Plan .. 52

Sub-Section Descriptions .. 54

Sub-Section Test Detailed Specification .. 54

Finite State Diagram – General Control ... 56

ALU Control Diagram .. 57

Branch control:.. 57

Memory Management Diagram ... Error! Bookmark not defined.

Special Notes

 RHIPS-Extended™ is an extension of the RHIPS™ processor created by John Neill,

Zack Painter, Anthony Sparks, and Jack Thorp for Computer Architecture in the Fall of 2020 at

Rose-Hulman Institute of Technology. The original documentation for RHIPS can be found

online at http://zacksportfolio.ddns.net/wp-content/uploads/Final_Report_2Z.pdf. The purpose of

this extension is to improve and fix many design errors in the original RHIPS design as well as

continue exploring how processors function through more advanced features and improvements.

Executive Summary

 RHIPS-Extended™ processor is a hybrid design, employing aspects of both assembler

and memory-to-memory instructions. Our processor is capable of interpreting 16-bit instructions

and immediate values, and can perform up to 15 different functions (with a 4-bit opcode, our

max instruction set is (2^4)-1, or 15). The memory of our processor is dedicated to two different

functions: the stack, and storing data. The stack is merely a place in memory that is used to

store variables and operands. Any and all data that is being used to perform a given task is

stored within the stack. The memory also stores return values, which are any values that the

processor needs to ‘pass on’ to subsequent processes later on in a function. Our processor is

capable of performing arithmetic and logical operations on up to two operands at a time, each

one being 4 bits in length. The processor can also interpret and perform operations with

immediate values up to 8 bits in length. In addition to our memory-to-memory style of

architecture, our RHIPS processor also incorporates one PC (program counter) register that is

used to hold the processor’s current position in a code within instruction memory. To perform its

necessary functions, our processor utilizes elements such as a sign extender, an ALU

(Arithmetic Logic Unit), multiplexers (MUX’s), a left shifter, and basic logic gates such as AND

and OR. RHIPS-Extended™ also includes an extension in the form of a kernel and additional

instructions.

http://zacksportfolio.ddns.net/wp-content/uploads/Final_Report_2Z.pdf

 Basic Overview
Instruction Types:

Arithmetic (A-Type)
15 12 | 11 8 | 7 4 | 3 0

Opcode Destination Operand1 Operand2

4 bits 4 bits 4 bits 4 bits

Description of Type: Arithmetic types are types that use the ALU the most, A-Types work with

two registers.

Jump (J-Type)
15 12 | 11 0

Opcode Operand1 / Destination

4 bits 12 bits

Description of Type: Jump types are used for jumping from one destination to another

Immediate (I-Type)
15 12 | 11 8 | 7 0

Opcode Op1/ Destination Immediate

4 bits 4 bits 8 bits

Description of Type: Immediate types are used for instructions that need to take a direct

(signed) number as part of the instruction, for example adding an immediate to a register.

Extension (Ext-Type)
15 12 | 11 11 | 10 8 | 7 4 | 3 0

Opcode KD Ext. Code General Purpose 1 General Purpose 2

0001 or 0010 1 bit 3 bits 4 bits 4 bits

Description of Type: Extension types are used as an extension of the original instruction set.

Ext-Types are used for various types but are mainly designed for kernel instructions. For

example, the KD section is used to choose between a kernel destination register.

* KD means Kernel Destination, this can also be used for general purpose.

** General Purpose 1 and 2 can be used as operands and destinations depending on the

instruction, see instruction RTL for instruction-specific usage.

*** Ext. Code means Extension code

Full Instruction Set List:

Instruction OP Code / Ext. Code Type

Slt 0000 Arithmetic

Beq 0001 / 000 Extension

Bne 0001 / 001 Extension

Add 0011 Arithmetic

And 0100 Arithmetic

Or 0101 Arithmetic

Sub 0110 Arithmetic

Ls 0111 Immediate

Ori 1000 Immediate

L2r 1001 Immediate

Addi 1010 Immediate

L2m 1011 Immediate

Jal 110 Jump

J 1101 Jump

Jr 1110 Jump

Ccp 0001 / 010 Extension

Cmp 0001 / 011 Extension

Km2mm 0001 / 100 Extension

Mm2km 0001 / 101 Extension

Term 0001 / 110 Extension

Syscall 0001 / 111 Extension

Syntax and Semantics – Real Instructions:

 ADD

add dest, op1, op2

15 12 | 11 8 | 7 4 | 3 0

Opcode Destination Operand1 Operand2

4 bits 4 bits 4 bits 4 bits
Put the sum of op1 and op2 into dest.

Step number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of Instruction

Memory and place it into the IR

register. newPC is a wire. It will stay

on the wire (Pre-calculated by the PC

adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into A,B, and

C registers simultaneously.

[3] Result = A + B Do the addition and place the result in

the Result register

[4] Reg[IR[11-8]] = Result Place the value from the Result

register into the register in the main

register

[5] PC = PC + 1 Place newPC into PC by setting

PCWrite to 1 and taking

 ADDI

addi dest/op1, imm

15 12 | 11 8 | 7 0

Opcode Op1/ Destination Immediate

4 bits 4 bits 8 bits
Put the sum of op1 and an 8 bit sign-extended immediate into op1.

Step Number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of

Instruction Memory and place

it into the IR register. newPC

is a wire. It will stay on the

wire (Pre-calculated by the

PC adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into

A,B, and C registers

simultaneously.

[3] Result = C + IR[7-0] Select IR[7-0] and C do the

add between the 2 and place

the result in the Result

register

[4] Reg[IR[11-8]] = Result Place the result from the

result register into the address

in Reg at the address

specified in IR[11-8]

[5] PC= PC + 1 Place newPC into PC by

setting PCWrite to 1 and

taking

 AND

and dest, op1, op2
15 12 | 11 8 | 7 4 | 3 0

Opcode Destination Operand1 Operand2

4 bits 4 bits 4 bits 4 bits

Step number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of Instruction

Memory and place it into the IR

register. newPC is a wire. It will stay

on the wire (Pre-calculated by the PC

adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into A,B, and

C registers simultaneously.

[3] Result = A & B Do the AND and place the result in

the Result register

[4] Reg[IR[11-8]] = Result Place the value from the Result

register into the register in the main

register

[5] PC = PC + 1 Place newPC into PC by setting

PCWrite to 1 and taking

 BNE

bne op1, op2

15 12 | 11 11 | 10 8 | 7 4 | 3 0

Opcode KD Ext. Code General Purpose 1 General Purpose 2

0001 or 0010 1 bit 3 bits 4 bits 4 bits
If GP1 does not equal GP2, branch to the location of destination in memory.

** The Assembler must load the address into the Branch Register

Step Number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of

Instruction Memory and place

it into the IR register. newPC

is a wire. It will stay on the

wire (Pre-calculated by the

PC adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into

A,B, and C registers

simultaneously.

[3] Result = B-A Subtract A from B

ALU sets Zero Flag if B-A

!=0

(See notes below)

[4] If (ZERO && BRANCH)

 PC = Reg[Branch]

This all happens outside of

the ALU. The control sets the

Branch control bit and if the

ALU sees that B-A != 0, it

sets the Zero flag. If so, the

PC is set to the value in the

branch register

*The value in the branch

register is always directly

exposed out of the register

file.

** We discard newPC

*** The ALUOP sets the

Zero flag to an inverted state

0 -> 1

1 -> 0

[5] PC= PC + 1 If the branch is not taken,

we’ll just continue and

increment PC

 BEQ

bne op1, op2

15 12 | 11 11 | 10 8 | 7 4 | 3 0

Opcode KD Ext. Code General Purpose 1 General Purpose 2

0001 or 0010 1 bit 3 bits 4 bits 4 bits
If GP1 equals GP2, branch to the location of destination in memory.

** The Assembler must load the address into the Branch Register

Step Number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of

Instruction Memory and place

it into the IR register. newPC

is a wire. It will stay on the

wire (Pre-calculated by the

PC adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into

A,B, and C registers

simultaneously.

[3] Result = B-A Subtract A from B

ALU sets Zero Flag if B-A

=0

[4] If (ZERO && BRANCH)

 PC = Reg[Branch]

This all happens outside of

the ALU. The control sets the

Branch control bit and if the

ALU sees that B-A=0, it sets

the Zero flag. If so, the PC is

set to the value in the branch

register

*The value in the branch

register is always directly

exposed out of the register

file.

** We discard newPC

[5] PC= PC + 1 If the branch is not taken,

we’ll just continue and

increment PC

 J

J destination

15 12 | 11 0

Opcode Operand1 / Destination

4 bits 12 bits
Jump to the location of the destination in memory.

Step Number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of

Instruction Memory and place

it into the IR register. newPC

is a wire. It will stay on the

wire (Pre-calculated by the

PC adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into

A,B, and C registers

simultaneously.

[3] Result = PC[15-11] |

ZE(IR[11-0])

Or together the top 4 bits of

PC and a zero extended

version of IR[11-0]

[4] PC = Result Place the Result into PC

 JAL

jal destination

15 12 | 11 0

Opcode Operand1 / Destination

4 bits 12 bits

Step Number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of

Instruction Memory and place

it into the IR register. newPC

is a wire. It will stay on the

wire (Pre-calculated by the

PC adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into

A,B, and C registers

simultaneously.

[3] Result = PC[15-11] |

ZE(IR[11-0])

Or together the top 4 bits of

PC and a zero extended

version of IR[11-0]

[4] Reg[IR[11-8] = PC Place the PC in the register

specified in IR[11-8]

[5] PC = Result Place the Result into PC

 JR

jr register

15 12 | 11 0

Opcode Operand1 / Destination

4 bits 12 bits
Jump to a specific register.

Step Number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of

Instruction Memory and place

it into the IR register. newPC

is a wire. It will stay on the

wire (Pre-calculated by the

PC adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into

A,B, and C registers

simultaneously.

[3] Result = C Pass through the Value from

C into the result register

[4] PC = Result Place the Result into PC

 OR

or dest, op1, op2

15 12 | 11 8 | 7 4 | 3 0

Opcode Destination Operand1 Operand2

4 bits 4 bits 4 bits 4 bits
Put the logical OR of op1 and op2 into dest.

Step number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of Instruction

Memory and place it into the IR

register. newPC is a wire. It will stay

on the wire (Pre-calculated by the PC

adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into A,B, and

C registers simultaneously.

[3] Result = A or B Do the or and place the result in the

Result register

[4] Reg[IR[11-8]] = Result Place the value from the Result

register into the register in the main

register

[5] PC = PC + 1 Place newPC into PC by setting

PCWrite to 1 and taking

 ORI

ori op1, imm

15 12 | 11 8 | 7 0

Opcode Op1/ Destination Immediate

4 bits 4 bits 8 bits
Put the logical OR of op1 and a zero-extended immediate into op1.

Step Number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of

Instruction Memory and place

it into the IR register. newPC

is a wire. It will stay on the

wire (Pre-calculated by the

PC adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into

A,B, and C registers

simultaneously.

[3] Result = C | IR[7-0] Select IR[7-0] and C do the

or between the 2 and place

the result in the Result

register

[4] Reg[IR[11-8]] = Result Place the result from the

result register into the address

in Reg at the address

specified in IR[11-8]

[5] PC= PC + 1 Place newPC into PC by

setting PCWrite to 1 and

taking

 L2R

L2r op1, imm

15 12 | 11 8 | 7 0

Opcode Op1/ Destination Immediate

4 bits 4 bits 8 bits
Load the value from the address specified in the immediate from memory into the

register (op1)

Step number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of

Instruction Memory and place

it into the IR register. newPC

is a wire. It will stay on the

wire (Pre-calculated by the

PC adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into

A,B, and C registers

simultaneously.

[3] Result = DataMem[IR[7-0]] Place the value stored in Data

Memory at the address IR[7-

0] into Result

[4] Reg[IR[11-8]]=Result Place the value from the

Result register into the

Register in the main register

[5] PC= PC + 1 Place newPC into PC by

setting PCWrite to 1 and

taking

SLT

slt dest, op1, op2

15 12 | 11 8 | 7 4 | 3 0

Opcode Destination Operand1 Operand2

4 bits 4 bits 4 bits 4 bits
If op1 is less than op2, a 1 is stored in dest. If op1 is not less than op2, a 0 is stored in

dest.

Step number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of Instruction

Memory and place it into the IR

register. newPC is a wire. It will stay

on the wire (Pre-calculated by the PC

adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into A,B, and

C registers simultaneously.

[3] Result = 1 if A<B Do the slt place the result in the

Result register

[4] Reg[IR[11-8]] = Result Place the value from the Result

register into the register in the main

register

[5] PC = PC + 1 Place newPC into PC by setting

PCWrite to 1 and taking

 SUB

sub dest, op1, op2

15 12 | 11 8 | 7 4 | 3 0

Opcode Destination Operand1 Operand2

4 bits 4 bits 4 bits 4 bits
Subtract op2 from op1, and store the difference into dest.

Step number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of Instruction

Memory and place it into the IR

register. newPC is a wire. It will stay

on the wire (Pre-calculated by the PC

adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into A,B, and

C registers simultaneously.

[3] Result = A op B Do the specified Operation and place

the result in the Result register

[4] Reg[IR[11-8]] = Result Place the value from the Result

register into the register in the main

register

[5] PC = PC + 1 Place newPC into PC by setting

PCWrite to 1 and taking

 LS

ls op1, imm

15 12 | 11 8 | 7 0

Opcode Op1/ Destination Immediate

4 bits 4 bits 8 bits
Left shift an immediate by 8.

Step Number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of

Instruction Memory and place

it into the IR register. newPC

is a wire. It will stay on the

wire (Pre-calculated by the

PC adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into

A,B, and C registers

simultaneously.

[3] Result = C op IR[7-0] Select IR[7-0] and C do the

operation between the 2 and

place the result in the Result

register

[4] Reg[IR[11-8]] = Result Place the result from the

result register into the address

in Reg at the address

specified in IR[11-8]

[5] PC= PC + 1 Place newPC into PC by

setting PCWrite to 1 and

taking

 L2M

 L2m op1, imm

15 12 | 11 8 | 7 0

Opcode Op1/ Destination Immediate

4 bits 4 bits 8 bits
Loads the value from the register into the memory at the address in the immediate

Step Number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of

Instruction Memory and place

it into the IR register. newPC

is a wire. It will stay on the

wire (Pre-calculated by the

PC adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into

A,B, and C registers

simultaneously.

[3] Result = C Pass the value, C through the

ALU into the result register

[4] DataMem[IR7-0]] = Result Place the result register into

the address IR[11-8] into

Data Memory

[5] PC= PC + 1 Place newPC into PC by

setting PCWrite to 1 and

taking

CCP

 ccp dest, op1

15 12 | 11 11 | 10 8 | 7 4 | 3 0

Opcode KD Ext. Code General Purpose 1 General Purpose 2

0001 1 bit 3 bits 4 bits 4 bits
Copy from a register to a kernel register. Destination can be k0 or k1.

Step Number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of

Instruction Memory and place

it into the IR register. newPC

is a wire. It will stay on the

wire (Pre-calculated by the

PC adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into

A,B, and C registers

simultaneously.

[3] Result = B Pass through B

[4] Reg[0xD]=1 Switch to Kernel Mode

[5] Kreg[IR[11]]=Result Copy the result to the kernel

register

[6] PC= PC + 1 Increment PC

CMP

 cmp dest, op1

15 12 | 11 11 | 10 8 | 7 4 | 3 0

Opcode KD Ext. Code General Purpose 1 General Purpose 2

0001 1 bit 3 bits 4 bits 4 bits
Copy from a kernel register to a register in the main processor. Op1 can be k0

or k1.

Step Number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of

Instruction Memory and place

it into the IR register. newPC

is a wire. It will stay on the

wire (Pre-calculated by the

PC adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into

A,B, and C registers

simultaneously.

[3] Reg[0xD]=1 Switch to Kernel Mode

[4] B = Kreg[IR[11]] Load the kernel register into

B

[5] Result = B Pass through B

[6] Reg[0xD]=0 Switch to User Mode

[7] Reg[IR[7-4]] = Result Set the specified register to

the result

[8] PC= PC + 1 Increment PC

TERM

 Term

15 12 | 11 11 | 10 8 | 7 4 | 3 0

Opcode KD Ext. Code General Purpose 1 General Purpose 2

0001 1 bit 3 bits 4 bits 4 bits
Terminate and force the processor to end the current program and go to a

locked state by forcing the clock to 0. (Set the HOLD register to 0)

Step Number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of

Instruction Memory and place

it into the IR register. newPC

is a wire. It will stay on the

wire (Pre-calculated by the

PC adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into

A,B, and C registers

simultaneously.

[3] Reg[0xD] = 1 Go into Kernel Mode

[4] PC = 0x0 Set PC to 0x0

[5] Kreg[0x7] = 1 Hold the processor in a

locked state

SYSCALL

 syscall code

15 12 | 11 11 | 10 8 | 7 4 | 3 0

Opcode KD Ext. Code General Purpose 1 General Purpose 2

0001 1 bit 3 bits 4 bits 4 bits
I’m not completely sure how I want this to work yet. Essentially, set the

processor into a different state or do things such as change between kernel

operations and a program in user space.

Step Number RTL Description

[1] a.) instMem[PC]

b.) IR = instMem[PC]

Take instruction out of

Instruction Memory and place

it into the IR register. newPC

is a wire. It will stay on the

wire (Pre-calculated by the

PC adder).

[2] A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

Load 3 common values into

A,B, and C registers

simultaneously.

[3] Result = ZE[A] Zero Extend A

[4] Reg[0xD] = 1 Switch to Kernel Mode

[5] KReg[0x4] = Result Record the Type of Interrupt

[6] KReg[0x6] = IR Record the Instruction

[7] KReg[0x2] = PC Record the location of

interrupt

[8] PC = 0x4 Go to Interrupt Handler

Syntax and Semantics – Pseudo-Instructions:

 Pseudo-Instructions are instructions that are to be handled by the assembler, the

number of instructions in the program may increase above what is written by the

programmer.

 BEQ – Pseudo-Instruction syntax
 Beq destination, op1, op2

 Beq is assembled into three instructions, and, ori, and real beq. and to

clear the br register, ori to load the immediate beq to do the real branch

BNE – Pseudo-Instruction syntax
 bne destination, op1, op2

 Bne is assembled into three instructions, and, ori, and real bne. and to

clear the br register, ori to load the immediate bnr to do the real branch

Register and Memory Layout:
 Memory is separated into separate memory blocks. The sections are: main register

file, kernel memory, kernel registers, main memory / stack, and instruction memory.

Main Registers:

This is a memory to memory processor, so the register file has been reserved as a
portion of the top 15 memory addresses.

Res. Mem. Address Description

$0 0x0
“Zero Register” This register is always
zero

$pc 0x1 Program Counter

$ra 0x2
Return address, holds the to return to
when jumping

$a0 0x3
Argument Register, holds the first
argument for functions

$a1 0x4
Argument Register, holds the second
argument for function calls

$v0 0x5
Result register 1, holds the resulting
value from a given operation

$v1 0x6
Result register 2, holds the resulting
value from a given operation if the
first is in use

$t0-$t2
0x7 -
0x9

Temporary memory space for
assembler or programmer, not for
long-term data storage

$IN 0xA A simple external input register
$OUT 0xB A simple external output register
$sp 0xC Stack Pointer

$memPage 0xD
Switch Between Using Kernel Memory and

Main Memory.

$br 0xE Branch Temporary
$mp 0xF Memory Pointer

Kernel Registers:

Located inside the kernel register file.

Register Name Address Description

$k0 0x0 Kernel Register 1, used for the

kernel operations

$k1 0x1 Kernel Register 2, used for

kernel operations

$PC_Temp 0x2 This is equivalent to the epc in

MIPS. Saves the PC in event of

an error

$ErrMask 0x3 This register is a mask to

determine if we are currently

listening for specific errors or

events. We don’t want to get

stuck in an error loop.

$ErrReg 0x4 A series of Flags to record the

cause of an error, the codes will

be defined later.

$kra 0x5 Kernel return address (To be

used inside of the kernel)

$FlaggedInst 0x6 Holds the instruction that

caused an interrupt if the

interrupt happened because of

an instruction

$HOLD 0x7 If set to 1, the processor will no

longer increment PC until reset

is triggered

$ReturnCode 0x8 Change the offset to be added

to an address going into Main

Memory.

$00 0x9 Constant 0

$Kbr 0xE Branch Register for Kernel

Data Memory Layout:

 Memory sections are changed by changing the offset register in the Kreg

Description Address

Data Memory 0-256

Kernel Memory 257-512

Additional Instruction Memory 512-1024

Instruction Memory

 The instruction memory contains the kernel and the active running program. It may also

contain other program that are not running.

Kernel Instruction Memory 0x000 – 0x00f

Instruction Memory 0x010 – 0xfff

RHIPS Assembly Coding Conventions

General

The top 15 addresses of memory are reserved to be used in place of registers.

Procedure Calling Conventions:

When making a procedure call, all registers should be backed up to the stack. When

returning from a procedure call, backed up registers should be restored.

PC conventions:

The PC should not be changed directly by the programmer

RA conventions:

Callee should be sure to back-up RA if multiple functions are being called, RA shouldn’t be

changed directly

A and V conventions:

A and V should only be set if returning values from or passing values to functions

These registers can be loaded into other sections of memory to preserve them in

sub-functions.

K register convensions:

These registers are to only be used by the kernel.

Temporary conventions:

These can be set temporarily by the compiler of the programmer, but it should be

noted that long-term storage must be stored outside of the 15th address of memory.

IN/OUT conventions:

The input can’t be written to but can be read from, and the output can’t be read

from but can be written to.

Branch Conventions and Notes:

The assembler should place the full address into the branch

temporary register before the expected branch occurs. This should happen even if the branch

does not happen.

Memory Allocation Notes:

Kernel memory is to only be used for the kernel and for temporarily storing instructions while

working with the instruction memory. The instruction memory is what where the active program

and kernel are stored. Finally, the main memory contains a stack and the user should not store

beyond the stack pointer. The user must also store below the additional program memory line.

Multi-Cycle RTL
Below is a multi-cycle representation of the entire instruction set. There may be some differences than listed above, but the RTL below should be considered

more complete.

All Instructions Most General Types

(A-Types / I-Types / etc)

Jump Types CCP CMP / TERM SYSCALL

1 2 3 4 5 6 7 8

1 instMem[PC]

1b IR = instMem[PC]

2 A = Reg[IR[7-4]]

B = Reg[IR[3-0]]

C = Reg[IR[11-8]]

3 A-Type

Result = A op

B

I-Type

Result = C op

IR[7-0]

L2R

Result =

MainMem[IR[7-

0]]

J / JAL

Result =

PC[15-11] |

ZE(IR[11-

0])

L2M / JR

Result = C

BEQ / BNE

Result = B-A

CCP

Result

= B

CMP / Term

Reg[0xD]=1

Syscall

Result =

ZE(A)

4 A-Type / I Type / L2R / JAL

Reg[IR[11-8]]=Result

J

PC =

Result

J DONE

JR

PC =

Result

DONE

L2M

MainMem[IR

[11-8]] =

Result

BEQ /BNE

If (ZERO &&

BRANCH)

 PC =

Reg[Branch]

CCP

Reg[0x

D]=1

CMP

B=Kreg[I

R[11]]

TER

M

PC =

0x0

Syscall

Reg[0x

D] = 1

5 A-Type / I-Type / L2R / L2M / BEQ /BNE (If not branched)

PC = PC + 1

A-Type / I-Type/ L2R / L2M /BEQ /BNE DONE

CCP

Kreg[IR[11]]=

Result

CMP

Result = B

TERM

Kreg[0x7] =

1

TERM

DONE

SYSCALL

KReg[0x4]

= Result

6 CCP

PC = PC + 1

CCP DONE

CMP

Reg[0xD]=0

SYSCALL

KReg[0x6] = IR

7 CMP

Reg[IR[7-4]] = Result

SYSCALL

KReg[0x2] = PC

8 CMP

PC = PC + 1

BNE DONE

SYSCALL

PC = 0x4

SYSCALL DONE

Code snippets and RelPrime

RelPrime – Assembly Code

0x10 RELPRIME:

0x10 L2r m, 2

0x11 Or $a1,$a1, n

0x12 Or $a2, $a2, m

0x13 LOOP:

0x14 Jal GCD

0x15 Addi $a2, 1

0x16 Ori $t0, 1

0x17 Beq $v0, $t0, JUMPDONE

0x18 J LOOP

0x19 JUMPDONE:

0x1A J DONE

0x1B GCD:

0x1B And $v0, $v0, $0

0x1C Beq $a1, $v0, Zero

0x1D GCDLOOP:

0x1D Beq $a2, $v0, RETURN

0x1E Or $t1, $a1, $0

0x1F Or $t2, $a2, $0

0x20 Slt $t1,$t1, $t2

0x21 Beq $t1, $t0, DECB

0x22 J DECA

0x23 DECA:

0x24 Sub $a1, $a2

0x25 J GCDLOOP

0x26 DECB:

0x27 Sub $a2, $a2, $a1

0x28 J GCDLOOP

0x29 ZERO:

0x29 Or $v0, $v0, $a2

0x2A Jr $ra

0x2B RETURN:

0x2B Or $v0, $v0, $a1

0x2C Jr $ra

0x2D DONE:

0x2D And $v0, $v0, $0

0x2E Or $v0, $v0, $a2

0x2F Addi $v0, -1

0x30 Term

End of function

RelPrime – Assembled

0x10 RELPRIME:

0x10 1001 0001 0000 0010

0x11 0101 0011 0011 0010

0x12 0101 0100 0100 0001

0x13 LOOP:

0x13 1101 0000 0000 1100

0x14 0100 0100 0000 0001

0x15 1001 1000 0000 0001

0x16 0100 1110 0000 0000

0x17 1000 1110 0001 1010

0x18 0001 0000 1000 0010

0x19 0101 1111 1111 1000

0x1A JUMPDONE:

0x1B 0101 0000 0010 1110

0x1C GCD:

0x1C 0011 0101 0101 0000

0x16 0100 1110 0000 0000

0x17 1000 1110 0011 1110

0x1D 0001 0000 0011 0101

0x1E GCDLOOP:

0x1F 0100 1110 0000 0000

0x20 1000 1110 0100 0011

0x21 0001 0000 0100 0101

0x2b 1000 1000 0011 0000

0x2d 1000 1001 0100 0000

0x2f 0000 1000 1000 1001

0x16 0100 1110 0000 0000

0x17 1000 1110 0011 1110

0x32 0001 0000 1000 0111

0x34 0101 0000 0000 0100

0x36 DECA:

0x36 1011 0011 0011 0100

0x38 0101 1111 1111 0000

0x3a DECB:

0x3a 1011 0100 0100 0011

0x3c 1011 1111 1110 1000

0x3e ZERO:

0x3e 1000 0101 0101 0100

0x41 1100 0000 0000 0010

0x43 RETURN:

0x43 1000 0101 0101 0011

0x45 1100 0000 0000 0010

0x47 DONE:

0x47 0111 0101 0101 0000

0x49 1000 0101 0101 0100

0x4A 0100 0101 1111 1111

0x4B 0001 0000 0000 0000

Additional Code Examples:

Loop, Branch, and subtraction example:
X = 0xF;
while(true){
 X=X-1;
 if(X==0){
 break

}
}

0x10 L2r X, 0xF
0x11 LOOP:
0x12 Sub X, 1
0x13 Beq END ,$0, X
0x14 J LOOP

0x15 END:

Load a 16 bit immediate into a register

 0x10 ori $t1, $0, 0xff

 0x11 ls $t1, 8

 0x12 ori $t1, $t1, 0xff

Assembler:

The processor has three types of instructions we must be able to assemble. Each type
will be assembled in similar methods but are slightly different. Most instructions should be
represented by directly relating the order of appearance to the bit order. For example, if
operand1 appears before operand2, operand1 is represented first in machine code.

Note: “. . .” Indicates an arbitrary operation of the type
Assembling an Arithmetic Type:

 Pseudo Code:
Destination = Operand1 . . . Operand2

Assembly Instruction Format:

Instruction Destination, Operand1, Operand2

Machine Code format:

 [opcode, destination, operand1, operand2]

Example:

add $t0 $t1 $t2 becomes
opcode dest. operand1 operand 2
0011 1011 1000 1001

Assembling a Jump Type:
 Pseudo Code:
 PC= PC[15-12] | Destination
 Assembly Instruction Format:
 Instruction Dest
 Machine Code format:
 [opcode, destination]
 Example:

 j 0x2f
 opcode dest./operand
 0101 0000 0010 1111
Assembling a Immediate Type:
 Pseudo Code:
 Dest = Data in Dest . . . SE[Immediate]

 Assembly Instruction Format:
 Instruction Address of Destination Immediate.
 Machine Code format:
 [opcode, Destination Addr., Sign Extended immediate]
 Example:

 L2r $t0, 4

 opcode Dest. Immediate
 1010 0101 0000 0100

L2r $t0, -255

 opcode Dest. Immediate
 1010 0101 1111 1111

RTL “Parts List”:

Component Abbreviation Description General Implementation Control Bits

PC PC Holds the address of the current instruction Generic Register (16 bits) PCWrite

Memory Manager MemMan Determines if we load an instruction from Kernel memory or Instruction Memory. Special Verilog and combinational logic InstOrKernel

Adder Addr Adds 1 to increment PC Simple Adder verilog (16 bits in/out) None

Instruction Memory InstMem Holds the current program to be executed General Verilog memory InstWrite

Kernel Memory KernMem Holds data for the kernel and additional kernel programs General Verilog Memory None

IR IR Holds the current instruction Generic Register (16 bits) IRWrite

Register File RegFile Main register file Generic Register File with internal logic RegWrite(A/B)

Sign Extender SE Extends to either 16 or 8 bits Verilog Sign Extender (8-16 bits) None

Multiplexers MUX (13) Choose between various things (See Datapath for specific instances) Verilog MUX Various control

A,B, C, Result Register A,B, C, ResReg Holds results between cycles Generic Register (16 bits) WriteEnable

Data Memory DatMem Long-term storage for the program data Simple Verilog Memory MemWrite/Read

Arithmetic Logic Unit ALU Does the operation defined by the instruction Verilog Defined ALU Zero, ALUOP

RTL Error Checking Methods (Taken from original RHIPS doc):
 We double checked all the RTL for dependencies that were out of order and made sure that
everything that needed to happen within the instruction was taken care of.
 We also developed an automated testing system in JAVA to simulate our RTL and compare it
to an expected result. This showed an error in our RTL relating to branching. We have fixed the
error and amended the RTL and conventions to reflect the changes.

The test bench will be submitted after it is fully completed. We are working on expanding
the test bench to run some tests on more complicated things. This isn’t to replace Xilinx, but it
will make some component logic testing easier than doing it by hand and give a second
validation to the validity of our components.

Control Bit descriptions

KRegWrite Enable Writing to the Kernel register file

AwriteEn Enable Writing to the A register

BwriteEn Enable Writing to the B register

CwriteEn Enable Writing to the C register

ALUOP Control the ALU

ResWriteEn Enable Writing the the Res register

RAddrSrcA Select the source of the address for port A for the reg file

KAddrBSrc Select the source of the address for port B for the kernel reg file

Asrc Select the source of the A port on the ALU

BSrc Select the source of the B port on the ALU

KDatInSrc Select the source of the data for the Kernel Data input port

RwriteAddrSrcSelect the source of the write address for the register file

KAddrC Select the source of the address for port C for the Kernel reg file

KWrAddrSrc Select the source of the write address for the kernel reg file

memSrc Select the source of the address going into the main memory

DatWrite Enable writing on the data memory

Datapath

Testing and Verification

Implementation in Xilinx:

Part Description

Generic Registers (PC, Result, A, B, C, IR) A generic synchronous register as defined by

the default register in Xilinx

Data Memory / Instruction Memory / Kernel

Memory

All of the bigger memory blocks will be done

using Xilinx’s block memory engine.

Register File / Kernel Register File This will be a Verilog file containing a set of

output ports and input ports. The output ports

will be assigned as registers. See the example

in the implementation file

All Mux (Due to the large amount, assume all

are similar, but with different bit amounts)

From experience, Xilinx MUX schematic

objects are not great, so it will be a simple

Verilog script to patch the input port to the

output port based on a signal

ALU This will be a Verilog combinational logic file

Control / ALU Control This is a Verilog control module.

Zero Extender and Sign extender A Verilog file to take an input and extend it to

16 bits by zero extending it or sign extending

it.

Unit Testing:

 Each individual unit will be exhaustively tested. However, parts with identical Verilog or

schematic units will only be tested once. For example, not all muxes will be tested, but only one

will be tested. Also, one register will be tested although 6 registers are needed.

Unit Test Description

Generic Register Test a normal write by reading the data back.

Test the write enable by trying to clear the

register by writing zero. Read the value again

and compare. If the value is constant, it has

passed.

Block Memory Set a short address, write and then read. Try

clearing by writing 0, but disable write

enable. If passed, it should NOT be 0

Set a long address write and then read. Try

clearing and writing 0, but disable write

enable. If passed, it should NOT be 0

Register File Test read and writing by writing all bits and

reading them. Next, check if Write enable

works by using the test described in generic

register.

MUX Attach a mux to 3 different values. Switch

between them and check if the value at the

output of the mux matches the expected value

ALU Do one of each operation and check that it has

the correct result. Check overflow detection

by adding really big numbers.

Control Will not be tested yet

Zero Extender / Sign Extender Put a value on the input and compare the

result of the output with the expected result

Hardware Integration Plan

The hardware integration will work in an “onion-like” design. Testing will start with

individual components and gradually work to larger subsystems. The subsystems will be tested

individually and then combined to larger sections of the completed datapath. The result will be

the entire data path. The subsystems and correct tests are listed below.

 A separate schematic was created for each test with a certain number of debug ports and

ports to enter data directly into the path. Later, more complicated tests, incorporated a control

module so the control did not have to be set manually. The Control module had been tested

previously and was found to work correctly. Each subsystem will have it’s own schematic and

subsequent tests will incorporate those schematics as independent symbols. Each section will not

need to know exactly how that subsection functions, but it should expect a correct value will be

placed at the output(s) of the schematic’s symbol.

 Below is a diagram determining the testing regions and the tests that will be performed.

Figure 4- Above shows the different planned stages of testing

Sub-Section Descriptions

Section Name Components Tested General Description

A Inst Mem, MAINMem,

Mux1,2, Addr

Test InstMem and Main

Mem combined and

switching between them

B1 RegFile Test selecting from different

Address inputs and data

inputs and read and write out

of the register

B2 KernFile Test selecting from different

Address inputs and data

inputs and read and write out

of the register

C RegFile, KernFile Test both B1 and B2 and

select between the 2 Kernel

Files and expect the result

D A,B,C,Result,ALU Test reading out of the A,B,C

registers and doing an

operation in the ALU. Then

store in Result

E RegFile,KRegFile,A,B,C,ALU Reading in and out of the

register files and into the

ALU. Store into Result and

back into a register

F InstMem, MainMem, RegFile,

KRegFile, A, B, C, ALU,

Adder

Test entire datapath

Sub-Section Test Detailed Specification

A. Test A

1. This test assumes that a schematic has already been created

i. Place a few dummy instructions into coe files for the Main Memory and

Instruction Memory block memory symbols.

ii. Place an address of a known instruction on the line and choose the output

of the Instruction Memory. Check that the output value matches the

expected value

iii. Repeat step ii. for the Kernel Memory as well.

B. Test B

1. Test B1

i. Run the following tests for RegFile independently

ii. Write into the place specified by the selected MUX value. Repeat for all

mux entries on ALL ports.

iii. Next, test reading by cycling through all possible MUX values on ALL

ports, simultaneously.

iv. This test will not test read/write enable because that should be tested in the

unit test module.

2. Test B2 – This test extends B1

i. Repeat B1 but for KRegFile

C. Test – C

i. B1 and B2, but select the correct output from the output mux.

D. Test –D

i. Test the ALU by loading into A B, C and do an operation and put into

result

E. Test – E

i. Combine C and D.

F. Test -F

i. Add E and the rest of the data path

ii. Place test instructions and run the instruction and read the output.

iii. There should be entire datapath now

Finite State Diagram – General Control

ALU Control Diagram

Branch control:

 Branching is determined by the main control unit. The control system reads the output of

the zero bit and determines if it branches.

Timing

Total Cycles to run relprime: 949377 cycles

Total Instructions: 46748

Minimum period: 25.162ns

Maximum frequency: 39.742MHz

ALUOpCode Operation

0x0 Left shift

0x1 And

0x2 Or

0x3 Add

0x4 Sub

0x7 Pass Through A

0x8 Pass Through B

0x9 No Operation

0xA Set less than (A < B)

APPENDIX – DESIGN JOURNAL – ZACKERY PAINTER

Zackery Painter Work Log

Milestone 1:

1-8-2020 – [2 hrs] Started to work on M1 and review last quarter’s design document. I started to

find changes I wanted to make and start writing it down.

1-11-2020 [4 hrs] Finish up writing the design journal for M1. Re-formatting last quarter’s

journal and re-assembling the code based on the new instruction set I designed. I also went

through and wrote the RTL for the new Ext-Type instructions

• 11-17-2020 7:00- 10:00PM

o Added commenting ability for the assembler.

o Started working on the Kernel and switching between Kernel and User memory.

o Added $kra (Kernel return address) to prevent tampering with ra

o Added a register to capture the instruction that caused an interrupt

o Added a hold register

o Added a very simple memory manager layout

▪ If address is < 0x1000 then choose inst mem.

▪ If address is > 0xfff then “spoof” a system call to enable kernel memory

mode and OR 0x0fff with the real address. For example INST[0x3fff] will

actually be stored in KMEM[0x3fff]

o Started to work on system call documentation (Not in design doc yet)

o Define interrupt codes for the kernel. (Not in design doc yet)

o Started making sure M2 is completed, review RTL start working on Multi-cycle

FSM.

▪ Start comparing created parts with what I had from last quarter to make

sure I still have everything

o Added an IDLE loop to kernel (Do nothing until we see an interrupt (Located at

PC = 0x0)

o Need to do:

▪ Finish M2.

▪ Get assembler to a better state (Multi-file / Kernel-level assembling)

• Work on getting addresses handled better

• Generating object files

• Re-implement Human-readable and verify functions

• Write assembling instructions for EXT type

▪ Drawing up data path

▪ Finish writing kernel

• 11-18-2021 8:00-10:30PM

o Removed following instructions (Memory manager will handle what they do)

▪ KKM2IMM

▪ IMM2KMM

o Re-wrote RTL to closer match the layout of a multi-cycle datapath.

▪ I didn’t test any of the new code because it is still the same as the last

quarter, but I just re-wrote it.

• 11-18-21 11:23-12:07

o Added “Parts List” to the design document

▪ Copied known good parts from the single cycle datapath from RHIPS

▪ Added A, B, and Result registers to store between cycles.

o Added the previous notes on RTL testing. (Will upload our testbench later)

o Started working on a plan to verify Ext-Types

o Started to work on control for this datapath

o Added some control bit descriptions. (Need to finish still)

• 11-19-2021 7:30-11:00

o Started drawing a new multicycle datapath

o Started working out control and logic.

o (Need to implement branch logic and jump logic)

o Start to go back and add components to the component list

o I ended up re-making the entire parts list and control bit list

o ****RE-IMPLEMENT BRANCH LOGIC!!!***

o Besides getting Branch/Jump logic implemented, M2 is done and I have a

datapath

o

• 11-20-2021 3:15-4:54

o I forgot my glasses so I didn’t get much done

o Started working on implementing branch and jump logic

o I submitted M2, then continued to work on the FSM diagram

• 11-25-2021 10:30PM – 1:24 AM (1-25-2021)

o Worked on finish up RTL (I forgot to log another day I worked a few hours on

straightening it out)

o Color coded cycles so it’s easy for me to distinguish.

o Most instructions have almost identical RTL for the top half of the diagram.

o Screenshot for this stage is below

o

o

Figure 5- Screenshot for RTL on 1-25-2021

• 1-26-2021 7:36PM – 2: AM (~6.5 hrs.)

o Started to move along M3. I’m a bit behind. Hoping to make it up tonight

o Finished the Datapath, had to go back and add a good amount of control bits

o I realized I don’t have logic for hardware level interrupts.

▪ I can add these later. I have support for software interrupts.

o I’m going to either take out or copy over the RTL I have been working on for

individual instructions. I have a full RTL, but not the individual one fixed in the

documentation

▪ This is complete now

o Finished writing specs on Unit testing

o Finished working on subsections

▪ A-G

o My implementation decisions:

▪ I decided to break up the datapath based on the cycle that it would be

completing as the full instruction. This allowed me to test fetching, decoding,

executing, memory access, and various switching signals independent of each

other.

▪ The architecture design and the decision to include separate memory

segments has created challenges that I might not otherwise have. For example,

there are a large amount of muxes that will be required to simply switch

between Kernel and User space. Additionally, the partial support for interrupts

has greatly complicated the design as some addresses must be hard-coded into

the processor (0x4, 0x7, etc.). This was needed to record PC, causes, etc.

▪ Additionally, I decided to include a separate port for the immediate on the

ALU because it allowed me to not have to compromise an A, B, or C input. I

can switch to using it based on the ALUOpcode. I think I can make the

ALUControl give up to 16 bits worth if instructions, as it does not have to

directly correlate to the actual OpCode of the instruction. (It can’t because of

the ext-code)

o I still need to re-visit my components and testing for that. I think I have some old tests

that should work fairly well. They proved to work well last quarter and most are basic

enough for me to adapt here as well. (For unit tests)

o I copied some old tests that I wrote last quarter. I did all the component and

implementation testing last quarter so I know these work. I need to go back and re-

name them to match my design doc, but they’re all there. It’s rather late and I have

registration in a few hours so I am going to stop working for the night.

• 1-31-2021 : 2:00-5:00

o I re-wrote my Datapath and Memory Layout once again

• 2-1-2021 : 1:00-4:00 5:00-6:00

o Started working on FSM

o I started implementing my plan, but ran into a weird error with the block memory.

o I ended up fixing this by re-generating it until it worked

• 2-1-2021-2-2-2021 : 11:00PM-1:05AM

o I started implementing my first stage. Most tests are implemented. All passed!

o I need to go back and fix some RTL and datapath from some errors I found while

writing control, I have it fixed on paper, but I need to scan and upload still.

o I will most likely implement Stage B(1,2) tomorrow if I have time. (The milestone

won’t reflect that)

o Currently Completed:

▪ A – Yes

▪ B1 – No

▪ B2- No

▪ C – No

▪ D – No

▪ E – No

▪ F – No

• 2-7-2021 3:55-6:30 10:15-3:00AM

o Started re-doing datapath (Again) to facilitate errors I found while working on the

implementation

o I finished B1 and started B2

o Finished B2.

• 2-8-2021 9:00-11:00

o I finished part C and started working on Part D

▪ Including Kernel or Register selection bits (Address 0xD)

• 2-8-2021 7:00-12:00AM

o I had to change the design rules of the Zero Extender because Xilinx refused to

simulate it anymore for some reason, even though it works in other places

o I finished Test D. I’ll start on Test E soon.

• 2-9-2021 10:11-2:00AM

o Fixed some control bits and started re-doing the FSM

o Finished the FSM diagram.

• 2-10-2021 1:30 – 5:00

o Finished Control

o Tried to finish M5 before it was due.

• 2-11-2021 7:00 – 3AM

o I put the entire datapath together, but have not tested it yet, or updated my

documentation.

o I spent a good 15-20 minutes just getting the schematic to compile

• 2-12-2021 6:30-??

o I found the issue with the garbage data (It was an issue with the sign extender)

o Fixed many other issues, especially with timing,

o Still working on validating everything works

• 2-14-20201

o I forgot to record it today, but I did a lot of work on the datapath

• 2-15-2021

o Also forgot to do it today

o But I finished the datapath and testing. Everything is done.

o I started writing relprime

• 2-16-2021 6:30-11:33

o Keep debugging relprime

o I also finished the assembler

o I’m still figuring out what’s going on

• 2-17-2021 12:00-3:45AM

o I kept working on relprime.

o Added a “dead” loop at address 0 of the coe file so that the processor stalled when

started.

o The control waits for a start signal then jumps to 0x4 (future will be kernel) then 0x15

(user space)

o Worked on various improvements to the assembler to automatically inject the

“kernel” into the coe file

o I have run it for a while and didn’t ever get a good result, It’s 4am though so I’m

going to bed now.

o I’ll debug it later. Here’s a screen shot of what my debug file from my assembler

looks like

o (slt is all zeros so it makes sense to just make a ton of those, it does nothing)

o \

• 2-17-2021 –11-12, 2-5PM

o Finally got relprime to run fully!!

o Next, I will try to get timing done.

o Probably won’t get it done before 5

APPENDIX – TESTS

Below is an example of the tests performed.

APPENDIX – PROOF OF RESULTS

Figure 6 - Waveform of final RelPrime and Kernel

