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Brief Introduction  
 

 RHIPS-Extended™ is an extension of the RHIPS™ processor created by John Neill, 

Zack Painter, Anthony Sparks, and Jack Thorp for Computer Architecture in the Fall of 2020 at 

Rose-Hulman Institute of Technology. The extended version is a 16 bit multicycle processor. 

The processor has 16 bit data addresses and 4-but register address bus. All data buses are 16 bit. 

 

In-depth Explanation 
 Testing 

THE PROCESSOR WAS IMPLEMENTED BY TESTING COMPONENTS INDIVIDUALLY, 

TESTING SUB-SECTIONS, AND TESTING THE FINAL DATAPATH. 

• Component testing 

o Each component was tested according to the design document. 

o After testing, multiple components were put together to make a full 

subsection. 

• Sub-section testing 

o After components were tested, the components were put together 

and tested in subsections defined in the design document 

o After the subsections were tested, a symbol was created from the 

subsection and added to the final processor. 

• Final processor 

o The final subsection (section F) was the final processor. 

o The final processor was comprised of 3 subsections and connected 

on the high-level schematic diagram. 

  Instruction Set Design 

  The instruction set was originally designed with 4 bit opcodes to get a total of 16 

instructions. However, after running out of instructions, it was decided to take 2 of the opcodes 

and make a 3-bit ext code to make a total of 16 additional instructions. This gave a total of 32 

instructions possible. To accommodate the new instruction types, it was decided to use the 

branch instruction opcodes because they are pseudo-instructions.  The new type is below. 

 



Implementation decisions 
 The implementation plan was to split the data path into 5 sections.  

A. Section A was the Instruction Memory and the Data Memory, as well as the memory 

management and switching logic. 

B. Section B was divided into Section B1 and B2 

a. B1 was the main register file and input muxes 

b. B2 was the kernel register file and the input muxes  

C. Section C was the combination of B1 and B2, along with switching logic on the output 

of the output of both register files. 

D. Section D was the input registers to the ALU, the ALU and the result registers. 

E. Section E was the combination of section D and C 

F. Section F was the entire processor, including PC logic and Sections A-E 

The final processor was comprised of subsections A, BC and D. This made it easier to test and 

connect together. It also made it cleaner in the upper-level data path. 

 

Final Comments on Design Choices 
 Overall, the design is good and was simple to implement. The current design allows for 

the implementation and expansion of the kernel and a future operating system. User modes and 

Kernel modes are supported through switching physically between 2 separate register files. 

Additionally, the future ability to read instructions directly out of the data memory can expand 

the number of programs that can run on this processor. However, this leads to some security 

issues that would need to be addressed through hardware changes. This leads to additional 

changes that should be made, including making branch more efficient, as at the moment it takes 

3 instructions to branch.  

  



Extras 
 

Assembler 

The assembler takes an assembly program, strips all comments and most spaces, and 

turns the instruction into machine code. It also has a configuration file defining types, 

instructions, and registers. This file gets loaded into a lookup table and directly assembled into 

the complete instruction.  

The assembler has two major features. First, it gives a side-by-side view of the instruction 

and machine code. This was important because it made it easier to debug any errors in the 

waveform. Second, it gave the option to splice a pre-assembled kernel into a final memory file to 

be loaded into Xilinx. 

Below is an example of both 



 

 

Figure 1- Side-By-Side Non-spliced – Replrime 

 



  

Figure 2- Final file - With kernel spliced in – Relprime 

 



Kernel 

 The kernel is very basic, but can be improved in the future. The kernel handles simple 

exceptions and basic software and hardware interrupts. The kernel has an “idle loop” at address 

zero. At this loop, the processor waits for an interrupt to start the program at the end of the 

kernel. The assembler automatically decides where the main loop starts based on how big the 

kernel is. The interrupt handler is always at address  0x4. The design document provides details 

of kernel specific registers. To return from the kernel, it can use the instruction retkern, but this is 

not included in the main RTL.  

 

Figure 3- Kernel side-by-side 

  



Conclusion  

 
 RHIPS-Extended™ is a Load Store processor with the capabilities to have a full kernel 

and user mode. Additionally, it is flexible enough that changes can be made easily without 

breaking the underlying instruction set. In the future, various timing improvements could be 

made to increase performance and efficiency. For example, doing multiple setup steps at once 

before writing into the register files. Overall, this is a very versatile processor with many 

capabilities.   
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Special Notes 
 

 RHIPS-Extended™ is an extension of the RHIPS™ processor created by John Neill, 

Zack Painter, Anthony Sparks, and Jack Thorp for Computer Architecture in the Fall of 2020 at 

Rose-Hulman Institute of Technology. The original documentation for RHIPS can be found 

online at http://zacksportfolio.ddns.net/wp-content/uploads/Final_Report_2Z.pdf. The purpose of 

this extension is to improve and fix many design errors in the original RHIPS design as well as 

continue exploring how processors function through more advanced features and improvements.  

 

Executive Summary 
 

 RHIPS-Extended™ processor is a hybrid design, employing aspects of both assembler 

and memory-to-memory instructions. Our processor is capable of interpreting 16-bit instructions 

and immediate values, and can perform up to 15 different functions (with a 4-bit opcode, our 

max instruction set is (2^4)-1, or 15). The memory of our processor is dedicated to two different 

functions: the stack, and storing data. The stack is merely a place in memory that is used to 

store variables and operands. Any and all data that is being used to perform a given task is 

stored within the stack. The memory also stores return values, which are any values that the 

processor needs to ‘pass on’ to subsequent processes later on in a function. Our processor is 

capable of performing arithmetic and logical operations on up to two operands at a time, each 

one being 4 bits in length. The processor can also interpret and perform operations with 

immediate values up to 8 bits in length. In addition to our memory-to-memory style of 

architecture, our RHIPS processor also incorporates one PC (program counter) register that is 

used to hold the processor’s current position in a code within instruction memory. To perform its 

necessary functions, our processor utilizes elements such as a sign extender, an ALU 

(Arithmetic Logic Unit), multiplexers (MUX’s), a left shifter, and basic logic gates such as AND 

and OR. RHIPS-Extended™ also includes an extension in the form of a kernel and additional 

instructions. 

  

http://zacksportfolio.ddns.net/wp-content/uploads/Final_Report_2Z.pdf


 

 

  Basic Overview 
Instruction Types:  

Arithmetic (A-Type) 
15                12 | 11       8 | 7            4 | 3                 0 

Opcode Destination Operand1 Operand2 

4 bits 4 bits 4 bits 4 bits 

Description of Type: Arithmetic types are types that use the ALU the most, A-Types work with 

two registers. 

Jump (J-Type) 
15                                          12 | 11                        0 

Opcode Operand1 / Destination 

4 bits 12 bits 

Description of Type: Jump types are used for jumping from one destination to another  

Immediate (I-Type) 
15                12 | 11                                            8 | 7                                                                                                  0 

Opcode Op1/ Destination Immediate 

4 bits 4 bits 8 bits 

Description of Type: Immediate types are used for instructions that need to take a direct 

(signed) number as part of the instruction, for example adding an immediate to a register. 

 

Extension (Ext-Type) 
15                12 | 11      11 | 10                           8 | 7                                             4 | 3                                              0 

Opcode KD Ext. Code General Purpose 1 General Purpose 2 

0001 or 0010 1 bit 3 bits 4 bits 4 bits 

Description of Type: Extension types are used as an extension of the original instruction set. 

Ext-Types are used for various types but are mainly designed for kernel instructions. For 

example, the KD section is used to choose between a kernel destination register. 

 

* KD means Kernel Destination, this can also be used for general purpose.  

** General Purpose 1 and 2 can be used as operands and destinations depending on the 

instruction, see instruction RTL for instruction-specific usage. 

*** Ext. Code means Extension code 

  



 

Full Instruction Set List:  

Instruction OP Code / Ext. Code Type 

Slt 0000 Arithmetic 

Beq 0001 / 000 Extension 

Bne 0001 / 001 Extension 

Add 0011 Arithmetic 

And 0100 Arithmetic 

Or 0101 Arithmetic 

Sub 0110 Arithmetic 

Ls 0111 Immediate 

Ori 1000 Immediate 

L2r 1001 Immediate 

Addi 1010 Immediate 

L2m 1011 Immediate 

Jal 110 Jump 

J 1101 Jump 

Jr 1110 Jump 

Ccp 0001 / 010 Extension 

Cmp 0001 / 011 Extension 

Km2mm 0001 / 100 Extension 

Mm2km 0001 / 101 Extension 

Term 0001 / 110 Extension 

Syscall 0001 / 111 Extension 

 

  



Syntax and Semantics –  Real Instructions:  

    ADD 

add dest, op1, op2 

15                12 | 11       8 | 7            4 | 3                 0 

Opcode Destination Operand1 Operand2 

4 bits 4 bits 4 bits 4 bits 
Put the sum of op1 and op2 into dest. 
 

Step number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of Instruction 

Memory and place it into the IR 

register. newPC is a wire. It will stay 

on the wire (Pre-calculated by the PC 

adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into A,B, and 

C registers simultaneously. 

[3] Result = A + B Do the addition and place the result in 

the Result register 

[4] Reg[IR[11-8]] = Result Place the value from the Result 

register into the register in the main 

register 

[5] PC = PC + 1 Place newPC into PC by setting 

PCWrite to 1 and taking 

   

  



  ADDI 

addi dest/op1, imm 

15                12 | 11                                            8 | 7                                                                                                  0  

Opcode Op1/ Destination Immediate 

4 bits 4 bits 8 bits 
Put the sum of op1 and an 8 bit sign-extended immediate into op1. 
 

Step Number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of 

Instruction Memory and place 

it into the IR register. newPC 

is a wire. It will stay on the 

wire (Pre-calculated by the 

PC adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into 

A,B, and C registers 

simultaneously. 

[3] Result = C + IR[7-0] Select IR[7-0] and C do the 

add between the 2 and place 

the result in the Result 

register  

[4] Reg[IR[11-8]] = Result Place the result from the 

result register into the address 

in Reg at the address 

specified in IR[11-8] 

[5] PC= PC + 1 Place newPC into PC by 

setting PCWrite to 1 and 

taking 

  



    AND 

and dest, op1, op2 
15                12 | 11       8 | 7            4 | 3                 0 

Opcode Destination Operand1 Operand2 

4 bits 4 bits 4 bits 4 bits 

 

Step number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of Instruction 

Memory and place it into the IR 

register. newPC is a wire. It will stay 

on the wire (Pre-calculated by the PC 

adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into A,B, and 

C registers simultaneously. 

[3] Result = A & B Do the AND and place the result in 

the Result register 

[4] Reg[IR[11-8]] = Result Place the value from the Result 

register into the register in the main 

register 

[5] PC = PC + 1 Place newPC into PC by setting 

PCWrite to 1 and taking 

    

  



 BNE 

bne op1, op2 

15                12 | 11      11 | 10                           8 | 7                                             4 | 3                                              0 

Opcode KD Ext. Code General Purpose 1 General Purpose 2 

0001 or 0010 1 bit 3 bits 4 bits 4 bits 
If GP1 does not equal GP2, branch to the location of destination in memory. 

** The Assembler must load the address into the Branch Register  

Step Number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of 

Instruction Memory and place 

it into the IR register. newPC 

is a wire. It will stay on the 

wire (Pre-calculated by the 

PC adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into 

A,B, and C registers 

simultaneously. 

[3] Result = B-A Subtract A from B 

ALU sets Zero Flag if B-A 

!=0 

(See notes below) 

[4] If ( ZERO && BRANCH) 

    PC = Reg[Branch] 

This all happens outside of 

the ALU. The control sets the 

Branch control bit and if the 

ALU sees that B-A != 0, it 

sets the Zero flag. If so, the 

PC is set to the value in the 

branch register 

*The value in the branch 

register is always directly 

exposed out of the register 

file. 

** We discard newPC 

*** The ALUOP sets the 

Zero flag to an inverted state  

0 -> 1 

1 -> 0 

[5] PC= PC + 1 If the branch is not taken, 

we’ll just continue and 

increment PC 

  



  

    BEQ 

bne op1, op2 

15                12 | 11      11 | 10                           8 | 7                                             4 | 3                                              0 

Opcode KD Ext. Code General Purpose 1 General Purpose 2 

0001 or 0010 1 bit 3 bits 4 bits 4 bits 
If GP1 equals GP2, branch to the location of destination in memory. 

** The Assembler must load the address into the Branch Register  

Step Number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of 

Instruction Memory and place 

it into the IR register. newPC 

is a wire. It will stay on the 

wire (Pre-calculated by the 

PC adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into 

A,B, and C registers 

simultaneously. 

[3] Result = B-A Subtract A from B 

ALU sets Zero Flag if B-A 

=0 

[4] If ( ZERO && BRANCH) 

    PC = Reg[Branch] 

This all happens outside of 

the ALU. The control sets the 

Branch control bit and if the 

ALU sees that B-A=0, it sets 

the Zero flag. If so, the PC is 

set to the value in the branch 

register 

*The value in the branch 

register is always directly 

exposed out of the register 

file. 

** We discard newPC 

[5] PC= PC + 1 If the branch is not taken, 

we’ll just continue and 

increment PC 

 

  



    J 

J destination 

15                                          12 | 11                                                                                                                                                     0 

Opcode Operand1 / Destination 

4 bits 12 bits 
Jump to the location of the destination in memory. 

Step Number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of 

Instruction Memory and place 

it into the IR register. newPC 

is a wire. It will stay on the 

wire (Pre-calculated by the 

PC adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into 

A,B, and C registers 

simultaneously. 

[3] Result = PC[15-11] | 

ZE(IR[11-0]) 

Or together the top 4 bits of 

PC and a zero extended 

version of IR[11-0] 

[4] PC = Result Place the Result into PC 

    

  



 JAL 

jal destination 

15                                          12 | 11                                                                                                                                                     0 

Opcode Operand1 / Destination 

4 bits 12 bits 

 

Step Number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of 

Instruction Memory and place 

it into the IR register. newPC 

is a wire. It will stay on the 

wire (Pre-calculated by the 

PC adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into 

A,B, and C registers 

simultaneously. 

[3] Result = PC[15-11] | 

ZE(IR[11-0]) 

Or together the top 4 bits of 

PC and a zero extended 

version of IR[11-0] 

[4] Reg[IR[11-8] = PC Place the PC in the register 

specified in IR[11-8] 

[5] PC = Result Place the Result into PC 

    JR 

jr register 

15                                          12 | 11                                                                                                                                                     0 

Opcode Operand1 / Destination 

4 bits 12 bits 
Jump to a specific register. 

Step Number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of 

Instruction Memory and place 

it into the IR register. newPC 

is a wire. It will stay on the 

wire (Pre-calculated by the 

PC adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into 

A,B, and C registers 

simultaneously. 

[3] Result = C Pass through the Value from 

C into the result register 

[4] PC = Result Place the Result into PC 

  



    OR 

or dest, op1, op2 

15                12 | 11       8 | 7            4 | 3                 0 

Opcode Destination Operand1 Operand2 

4 bits 4 bits 4 bits 4 bits 
Put the logical OR of op1 and op2 into dest. 

Step number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of Instruction 

Memory and place it into the IR 

register. newPC is a wire. It will stay 

on the wire (Pre-calculated by the PC 

adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into A,B, and 

C registers simultaneously. 

[3] Result = A or B Do the or and place the result in the 

Result register 

[4] Reg[IR[11-8]] = Result Place the value from the Result 

register into the register in the main 

register 

[5] PC = PC + 1 Place newPC into PC by setting 

PCWrite to 1 and taking 

     

  



    ORI 

ori op1, imm 

15                12 | 11                                            8 | 7                                                                                                  0 

Opcode Op1/ Destination Immediate 

4 bits 4 bits 8 bits 
Put the logical OR of op1 and a zero-extended immediate into op1. 

 

Step Number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of 

Instruction Memory and place 

it into the IR register. newPC 

is a wire. It will stay on the 

wire (Pre-calculated by the 

PC adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into 

A,B, and C registers 

simultaneously. 

[3] Result = C |  IR[7-0] Select IR[7-0] and C do the 

or between the 2 and place 

the result in the Result 

register  

[4] Reg[IR[11-8]] = Result Place the result from the 

result register into the address 

in Reg at the address 

specified in IR[11-8] 

[5] PC= PC + 1 Place newPC into PC by 

setting PCWrite to 1 and 

taking 
 

  



 

    L2R 

L2r op1, imm 

15                12 | 11                                            8 | 7                                                                                                  0 

Opcode Op1/ Destination Immediate 

4 bits 4 bits 8 bits 
Load the value from the address specified in the immediate from memory into the 

register (op1) 

Step number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of 

Instruction Memory and place 

it into the IR register. newPC 

is a wire. It will stay on the 

wire (Pre-calculated by the 

PC adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into 

A,B, and C registers 

simultaneously. 

[3] Result = DataMem[IR[7-0]] Place the value stored in Data 

Memory at the address IR[7-

0] into Result 

[4] Reg[IR[11-8]]=Result Place the value from the 

Result register into the 

Register in the main register 

[5] PC= PC + 1 Place newPC into PC by 

setting PCWrite to 1 and 

taking 

     



SLT 

slt dest, op1, op2 

15                12 | 11       8 | 7            4 | 3                 0 

Opcode Destination Operand1 Operand2 

4 bits 4 bits 4 bits 4 bits 
If op1 is less than op2, a 1 is stored in dest. If op1 is not less than op2, a 0 is stored in 

dest. 

Step number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of Instruction 

Memory and place it into the IR 

register. newPC is a wire. It will stay 

on the wire (Pre-calculated by the PC 

adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into A,B, and 

C registers simultaneously. 

[3] Result = 1 if A<B Do the slt place the result in the 

Result register 

[4] Reg[IR[11-8]] = Result Place the value from the Result 

register into the register in the main 

register 

[5] PC = PC + 1 Place newPC into PC by setting 

PCWrite to 1 and taking 

    

  



 SUB 

sub dest, op1, op2 

15                12 | 11       8 | 7            4 | 3                 0 

Opcode Destination Operand1 Operand2 

4 bits 4 bits 4 bits 4 bits 
Subtract op2 from op1, and store the difference into dest. 

Step number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of Instruction 

Memory and place it into the IR 

register. newPC is a wire. It will stay 

on the wire (Pre-calculated by the PC 

adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into A,B, and 

C registers simultaneously. 

[3] Result = A op B Do the specified Operation and place 

the result in the Result register 

[4] Reg[IR[11-8]] = Result Place the value from the Result 

register into the register in the main 

register 

[5] PC = PC + 1 Place newPC into PC by setting 

PCWrite to 1 and taking 

      



 

    LS 

ls op1, imm 

15                12 | 11                                            8 | 7                                                                                                  0 

Opcode Op1/ Destination Immediate 

4 bits 4 bits 8 bits 
Left shift an immediate by 8. 

 

Step Number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of 

Instruction Memory and place 

it into the IR register. newPC 

is a wire. It will stay on the 

wire (Pre-calculated by the 

PC adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into 

A,B, and C registers 

simultaneously. 

[3] Result = C op IR[7-0] Select IR[7-0] and C do the 

operation between the 2 and 

place the result in the Result 

register  

[4] Reg[IR[11-8]] = Result Place the result from the 

result register into the address 

in Reg at the address 

specified in IR[11-8] 

[5] PC= PC + 1 Place newPC into PC by 

setting PCWrite to 1 and 

taking 

 

  



    L2M 

     L2m op1, imm 

15                12 | 11                                            8 | 7                                                                                                  0  

Opcode Op1/ Destination Immediate 

4 bits 4 bits 8 bits 
Loads the value from the register into the memory at the address in the immediate 
 

Step Number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of 

Instruction Memory and place 

it into the IR register. newPC 

is a wire. It will stay on the 

wire (Pre-calculated by the 

PC adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into 

A,B, and C registers 

simultaneously. 

[3] Result = C Pass the value, C through the 

ALU into the result register 

[4] DataMem[IR7-0]] = Result Place the result register into 

the address IR[11-8] into 

Data Memory 

[5] PC= PC + 1 Place newPC into PC by 

setting PCWrite to 1 and 

taking 

  



CCP 

 ccp dest, op1 

15                12 | 11      11 | 10                           8 | 7                                             4 | 3                                              0 

Opcode KD Ext. Code General Purpose 1 General Purpose 2 

0001  1 bit 3 bits 4 bits 4 bits 
Copy from a register to a kernel register. Destination can be k0 or k1.  

Step Number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of 

Instruction Memory and place 

it into the IR register. newPC 

is a wire. It will stay on the 

wire (Pre-calculated by the 

PC adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into 

A,B, and C registers 

simultaneously. 

[3] Result = B Pass through B 

[4] Reg[0xD]=1 Switch to Kernel Mode 

[5] Kreg[IR[11]]=Result Copy the result to the kernel 

register 

[6] PC= PC + 1 Increment PC 

 

  



CMP 

 cmp dest, op1 

15                12 | 11      11 | 10                           8 | 7                                             4 | 3                                              0 

Opcode KD Ext. Code General Purpose 1 General Purpose 2 

0001  1 bit 3 bits 4 bits 4 bits 
Copy from a kernel register to a register in the main processor. Op1 can be k0 

or k1. 

Step Number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of 

Instruction Memory and place 

it into the IR register. newPC 

is a wire. It will stay on the 

wire (Pre-calculated by the 

PC adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into 

A,B, and C registers 

simultaneously. 

[3] Reg[0xD]=1 Switch to Kernel Mode 

[4] B = Kreg[IR[11]] Load the kernel register into 

B 

[5] Result = B Pass through B 

[6] Reg[0xD]=0 Switch to User Mode 

[7] Reg[IR[7-4]] = Result Set the specified register to 

the result 

[8] PC= PC + 1 Increment PC 

 

  



TERM 

 Term 

15                12 | 11      11 | 10                           8 | 7                                             4 | 3                                              0 

Opcode KD Ext. Code General Purpose 1 General Purpose 2 

0001  1 bit 3 bits 4 bits 4 bits 
Terminate and force the processor to end the current program and go to a 

locked state by forcing the clock to 0. (Set the HOLD register to 0) 

 

Step Number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of 

Instruction Memory and place 

it into the IR register. newPC 

is a wire. It will stay on the 

wire (Pre-calculated by the 

PC adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into 

A,B, and C registers 

simultaneously. 

[3] Reg[0xD] = 1 Go into Kernel Mode 

[4] PC = 0x0 Set PC to 0x0 

[5] Kreg[0x7] = 1 Hold the processor in a 

locked state 
  

  



SYSCALL 

 syscall code 

15                12 | 11      11 | 10                           8 | 7                                             4 | 3                                              0 

Opcode KD Ext. Code General Purpose 1 General Purpose 2 

0001  1 bit 3 bits 4 bits 4 bits 
I’m not completely sure how I want this to work yet. Essentially, set the 

processor into a different state or do things such as change between kernel 

operations and a program in user space. 

 

  

Step Number RTL Description 

[1] a.) instMem[PC] 

b.) IR = instMem[PC] 

Take instruction out of 

Instruction Memory and place 

it into the IR register. newPC 

is a wire. It will stay on the 

wire (Pre-calculated by the 

PC adder). 

[2] A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

Load 3 common values into 

A,B, and C registers 

simultaneously. 

[3] Result = ZE[A] Zero Extend A 

[4] Reg[0xD] = 1 Switch to Kernel Mode 

[5] KReg[0x4] = Result Record the Type of Interrupt 

[6] KReg[0x6] = IR Record the Instruction 

[7] KReg[0x2] = PC Record the location of 

interrupt 

[8] PC = 0x4 Go to Interrupt Handler 

 

  



Syntax and Semantics –  Pseudo-Instructions:  

 Pseudo-Instructions are instructions that are to be handled by the assembler, the 

number of instructions in the program may increase above what is written by the 

programmer. 

    BEQ – Pseudo-Instruction syntax  
  Beq destination, op1, op2 

 

 Beq is assembled into three instructions, and, ori, and real beq. and to 

clear the br register, ori to load the immediate beq to do the real branch  

BNE – Pseudo-Instruction syntax  
  bne destination, op1, op2 

 

 Bne is assembled into three instructions, and, ori, and real bne. and to 

clear the br register, ori to load the immediate bnr to do the real branch  

 

Register and Memory Layout: 
 Memory is separated into separate memory blocks. The sections are: main register 

file, kernel memory, kernel registers, main memory / stack, and instruction memory.  

Main Registers:  

 
This is a memory to memory processor, so the register file has been reserved as a 
portion of the top 15 memory addresses. 

 
Res. Mem.  Address  Description 

$0  0x0  
“Zero Register” This register is always 
zero 

$pc  0x1  Program Counter 

$ra  0x2  
Return address, holds the to return to 
when jumping 

$a0  0x3  
Argument Register, holds the first 
argument for functions 

$a1  0x4  
Argument Register, holds the second 
argument for function calls 

$v0  0x5  
Result register 1, holds the resulting 
value from a given operation 

$v1  0x6  
Result register 2, holds the resulting 
value from a given operation if the 
first is in use 

$t0-$t2  
0x7 - 
0x9 

Temporary memory space for 
assembler or programmer, not for 
long-term data storage 



$IN  0xA  A simple external input register 
$OUT  0xB  A simple external output register 
$sp  0xC  Stack Pointer 

$memPage 0xD 
Switch Between Using Kernel Memory and 

Main Memory. 

$br  0xE  Branch Temporary 
$mp  0xF  Memory Pointer 

 

Kernel Registers:  

Located inside the kernel register file. 

Register Name Address Description 

$k0 0x0 Kernel Register 1, used for the 

kernel operations 

$k1 0x1 Kernel Register 2, used for 

kernel operations 

$PC_Temp 0x2 This is equivalent to the epc in 

MIPS. Saves the PC in event of 

an error 

$ErrMask 0x3 This register is a mask to 

determine if we are currently 

listening for specific errors or 

events. We don’t want to get 

stuck in an error loop. 

$ErrReg 0x4 A series of Flags to record the 

cause of an error, the codes will 

be defined later. 

$kra 0x5 Kernel return address (To be 

used inside of the kernel) 

$FlaggedInst 0x6 Holds the instruction that 

caused an interrupt if the 

interrupt happened because of 

an instruction 

$HOLD 0x7 If set to 1, the processor will no 

longer increment PC until reset 

is triggered  

$ReturnCode 0x8 Change the offset to be added 

to an address going into Main 

Memory. 

$00 0x9 Constant 0 

$Kbr 0xE Branch Register for Kernel 

 

 

 



 

 

Data Memory Layout: 

 Memory sections are changed by changing the offset register in the Kreg  

Description Address 

Data Memory 0-256 

Kernel Memory 257-512 

Additional Instruction Memory 512-1024 

  



Instruction Memory 

 The instruction memory contains the kernel and the active running program. It may also 

contain other program that are not running. 

Kernel Instruction Memory 0x000 – 0x00f  

Instruction Memory 0x010 – 0xfff 

  



RHIPS Assembly Coding Conventions 

General 

The top 15 addresses of memory are reserved to be used in place of registers. 

Procedure Calling Conventions:  

When making a procedure call, all registers should be backed up to the stack. When 

returning from a procedure call, backed up registers should be restored. 

PC conventions:  

The PC should not be changed directly by the programmer 

RA conventions: 

Callee should be sure to back-up RA if multiple functions are being called, RA shouldn’t be 

changed directly 

A and V conventions:  

 

A and V should only be set if returning values from or passing values to functions 

These registers can be loaded into other sections of memory to preserve them in 

sub-functions. 

K register convensions:  

These registers are to only be used by the kernel. 

Temporary conventions:  

These can be set temporarily by the compiler of the programmer, but it should be 

noted that long-term storage must be stored outside of the 15th address of memory. 

IN/OUT conventions:  

The input can’t be written to but can be read from, and the output can’t be read 

from but can be written to. 

Branch Conventions and Notes:  

The assembler should place the full address into the branch 

temporary register before the expected branch occurs. This should happen even if the branch 

does not happen. 

Memory Allocation Notes:  

Kernel memory is to only be used for the kernel and for temporarily storing instructions while 

working with the instruction memory. The instruction memory is what where the active program 

and kernel are stored. Finally, the main memory contains a stack and the user should not store 

beyond the stack pointer. The user must also store below the additional program memory line. 

  



Multi-Cycle RTL 
Below is a multi-cycle representation of the entire instruction set. There may be some differences than listed above, but the RTL below should be considered 

more complete. 

All Instructions Most General Types 

(A-Types / I-Types / etc) 

Jump Types CCP CMP / TERM SYSCALL 

1 2 3 4 5 6 7 8 

 

1 instMem[PC] 

1b IR = instMem[PC] 

 

2 A = Reg[IR[7-4]] 

B = Reg[IR[3-0]] 

C = Reg[IR[11-8]] 

3 A-Type 

Result = A op 

B 

I-Type 

Result = C op 

IR[7-0] 

L2R 

Result = 

MainMem[IR[7-

0]] 

J / JAL 

Result = 

PC[15-11] | 

ZE(IR[11-

0]) 

L2M / JR 

Result = C 

BEQ / BNE 

Result = B-A 

CCP 

Result 

= B 

CMP / Term  

Reg[0xD]=1 

Syscall 

Result = 

ZE(A) 

4 A-Type / I Type / L2R / JAL  

Reg[IR[11-8]]=Result 

J 

PC = 

Result 

J DONE 

JR 

PC = 

Result 

DONE 

L2M 

MainMem[IR

[11-8]] = 

Result 

BEQ /BNE  

If ( ZERO && 

BRANCH) 

    PC = 

Reg[Branch] 

CCP 

Reg[0x

D]=1 

CMP 

B=Kreg[I

R[11]] 

TER

M 

PC = 

0x0 

Syscall 

Reg[0x

D] = 1 

5 A-Type / I-Type / L2R / L2M / BEQ /BNE (If not branched)  

PC = PC + 1 

A-Type / I-Type/ L2R / L2M /BEQ /BNE  DONE 

CCP 

Kreg[IR[11]]=

Result 

CMP 

Result = B 

TERM 

Kreg[0x7] = 

1 

TERM 

DONE 

SYSCALL 

KReg[0x4] 

= Result 

6 CCP 

PC = PC + 1 

CCP DONE 

CMP 

Reg[0xD]=0 

SYSCALL 

KReg[0x6] = IR 

7 CMP 

Reg[IR[7-4]] = Result 

SYSCALL 

KReg[0x2] = PC 

8 CMP 

PC = PC + 1 

BNE DONE 

SYSCALL 

PC = 0x4 

SYSCALL DONE 



Code snippets and RelPrime 

RelPrime – Assembly Code 

0x10 RELPRIME: 

0x10 L2r m, 2 

0x11 Or $a1,$a1, n 

0x12 Or $a2, $a2, m 

0x13 LOOP: 

0x14 Jal GCD 

0x15 Addi $a2, 1 

0x16 Ori $t0, 1 

0x17 Beq $v0, $t0, JUMPDONE 

0x18 J LOOP 

0x19 JUMPDONE: 

0x1A J DONE 

0x1B GCD: 

0x1B And $v0, $v0, $0 

0x1C Beq $a1, $v0, Zero 

0x1D GCDLOOP: 

0x1D Beq $a2, $v0, RETURN 

0x1E Or $t1, $a1, $0 

0x1F Or $t2, $a2, $0 

0x20 Slt $t1,$t1, $t2 

0x21 Beq $t1, $t0, DECB 

0x22 J DECA 

0x23 DECA: 

0x24 Sub $a1, $a2 

0x25 J GCDLOOP 

0x26 DECB: 



0x27 Sub $a2, $a2, $a1 

0x28 J GCDLOOP 

0x29 ZERO: 

0x29 Or $v0, $v0, $a2 

0x2A Jr $ra 

0x2B RETURN: 

0x2B Or $v0, $v0, $a1 

0x2C Jr $ra 

0x2D DONE: 

0x2D And $v0, $v0, $0 

0x2E Or $v0, $v0, $a2 

0x2F Addi $v0, -1 

0x30 Term 

End of function 

RelPrime – Assembled 

0x10 RELPRIME: 

0x10             1001 0001 0000 0010 

0x11             0101 0011 0011 0010 

0x12             0101 0100 0100 0001 

0x13 LOOP:                   

0x13             1101 0000 0000 1100 

0x14             0100 0100 0000 0001 

0x15             1001 1000 0000 0001 

0x16   0100 1110 0000 0000 

0x17   1000 1110 0001 1010 

0x18             0001 0000 1000 0010 

0x19             0101 1111 1111 1000 



  

0x1A JUMPDONE: 

  

0x1B             0101 0000 0010 1110 

0x1C GCD: 

0x1C             0011 0101 0101 0000 

0x16   0100 1110 0000 0000 

0x17   1000 1110 0011 1110 

0x1D             0001 0000 0011 0101 

0x1E  GCDLOOP:  

0x1F   0100 1110 0000 0000 

0x20   1000 1110 0100 0011 

0x21             0001 0000 0100 0101 

0x2b             1000 1000 0011 0000 

0x2d             1000 1001 0100 0000  

0x2f             0000 1000 1000 1001 

0x16   0100 1110 0000 0000 

0x17   1000 1110 0011 1110 

0x32             0001 0000 1000 0111 

0x34             0101 0000 0000 0100 

  

0x36 DECA: 

  

0x36             1011 0011 0011 0100 

0x38             0101 1111 1111 0000 

  



0x3a DECB: 

  

0x3a             1011 0100 0100 0011 

0x3c             1011 1111 1110 1000 

  

0x3e ZERO:  

  

0x3e             1000 0101 0101 0100 

0x41             1100 0000 0000 0010 

  

0x43 RETURN: 

  

0x43             1000 0101 0101 0011 

0x45             1100 0000 0000 0010 

          

0x47 DONE: 

  

0x47             0111 0101 0101 0000 

0x49             1000 0101 0101 0100 

0x4A             0100 0101 1111 1111 

0x4B   0001 0000 0000 0000 

Additional Code Examples:  

Loop, Branch, and subtraction example: 
X = 0xF; 
while(true){ 
 X=X-1; 
 if(X==0){ 
  break 

} 
} 

  



 
0x10 L2r X, 0xF 
0x11 LOOP: 
0x12  Sub X, 1 
0x13  Beq END ,$0, X 
0x14    J LOOP 

 

0x15 END: 

 

Load a 16 bit immediate into a register 

 0x10 ori $t1, $0, 0xff  

 0x11 ls $t1, 8 

 0x12 ori $t1, $t1, 0xff  



  



Assembler: 

 

The processor has three types of instructions we must be able to assemble. Each type 
will be assembled in similar methods but are slightly different. Most instructions should be 
represented by directly relating the order of appearance to the bit order. For example, if 
operand1 appears before operand2, operand1 is represented first in machine code. 
 

Note: “. . .” Indicates an arbitrary operation of the type  
Assembling an Arithmetic Type: 
 

 Pseudo Code: 
Destination = Operand1 . . . Operand2 

 

Assembly Instruction Format:  
 

Instruction Destination, Operand1, Operand2 
 

Machine Code format: 
 

 [opcode, destination, operand1, operand2] 
 

Example: 
 

add $t0 $t1 $t2 becomes 
opcode        dest.       operand1     operand 2 
0011      1011     1000       1001    

 

Assembling a Jump Type: 
 Pseudo Code: 
  PC= PC[15-12] | Destination  
 Assembly Instruction Format: 
  Instruction  Dest 
 Machine Code format: 
  [opcode, destination] 
 Example: 
 

  j 0x2f 
  opcode            dest./operand 
  0101      0000     0010     1111 
Assembling a Immediate Type: 
 Pseudo Code: 
  Dest = Data in Dest  . . . SE[Immediate] 



 Assembly Instruction Format: 
  Instruction     Address of Destination    Immediate. 
 Machine Code format: 
  [opcode, Destination Addr., Sign Extended immediate] 
 Example: 
   
  L2r $t0, 4 

     opcode        Dest.             Immediate 
    1010       0101      0000  0100 
 

L2r $t0, -255 

  opcode      Dest.        Immediate 
   1010      0101      1111 1111 

  



RTL “Parts List”: 

Component Abbreviation Description General Implementation Control Bits

PC PC Holds the address of the current instruction Generic Register (16 bits) PCWrite

Memory Manager MemMan Determines if we load an instruction from Kernel memory or Instruction Memory. Special Verilog and combinational logic InstOrKernel

Adder Addr Adds 1 to increment PC Simple Adder verilog (16 bits in/out) None

Instruction Memory InstMem Holds the current program to be executed General Verilog memory InstWrite

Kernel Memory KernMem Holds data for the kernel and additional kernel programs General Verilog Memory None

IR IR Holds the current instruction Generic Register (16 bits) IRWrite

Register File RegFile Main register file Generic Register File with internal logic RegWrite(A/B)

Sign Extender SE Extends to either 16 or 8 bits Verilog Sign Extender (8-16 bits) None

Multiplexers MUX (13) Choose between various things (See Datapath for specific instances) Verilog MUX Various control

A,B, C, Result Register A,B, C, ResReg Holds results between cycles Generic Register (16 bits) WriteEnable

Data Memory DatMem Long-term storage for the program data Simple Verilog Memory MemWrite/Read

Arithmetic Logic Unit ALU Does the operation defined by the instruction Verilog Defined ALU Zero, ALUOP  

  



RTL Error Checking Methods (Taken from original RHIPS doc): 
    We double checked all the RTL for dependencies that were out of order and made sure that 
everything that needed to happen within the instruction was taken care of.  
    We also developed an automated testing system in JAVA to simulate our RTL and compare it 
to an expected result. This showed an error in our RTL relating to branching. We have fixed the 
error and amended the RTL and conventions to reflect the changes.  

The test bench will be submitted after it is fully completed. We are working on expanding 
the test bench to run some tests on more complicated things. This isn’t to replace Xilinx, but it 
will make some component logic testing easier than doing it by hand and give a second 
validation to the validity of our components. 
  



Control Bit descriptions  
 

KRegWrite Enable Writing to the Kernel register file

AwriteEn Enable Writing to the A register

BwriteEn Enable Writing to the B register

CwriteEn Enable Writing to the C register

ALUOP Control the ALU

ResWriteEn Enable Writing the the Res register

RAddrSrcA Select the source of the address for port A for the reg file

KAddrBSrc Select the source of the address for port B for the kernel reg file

Asrc Select the source of the A port on the ALU

BSrc Select the source of the B port on the ALU

KDatInSrc Select the source of the data for the Kernel Data input port

RwriteAddrSrcSelect the source of the write address for the register file

KAddrC Select the source of the address for port C for the Kernel reg file

KWrAddrSrc Select the source of the write address for the kernel reg file

memSrc Select the source of the address going into the main memory

DatWrite Enable writing on the data memory



Datapath 

 



Testing and Verification 
 

Implementation in Xilinx:  

  

Part Description 

Generic Registers (PC, Result, A, B, C, IR) A generic synchronous register as defined by 

the default register in Xilinx  

Data Memory / Instruction Memory / Kernel 

Memory 

All of the bigger memory blocks will be done 

using Xilinx’s block memory engine.  

Register File / Kernel Register File This will be a Verilog file containing a set of 

output ports and input ports. The output ports 

will be assigned as registers. See the example 

in the implementation file 

All Mux (Due to the large amount, assume all 

are similar, but with different bit amounts) 

From experience, Xilinx MUX schematic 

objects are not great, so it will be a simple 

Verilog script to patch the input port to the 

output port based on a signal  

ALU This will be a Verilog combinational logic file 

Control / ALU Control This is a Verilog control module. 

Zero Extender and Sign extender A Verilog file to take an input and extend it to 

16 bits by zero extending it or sign extending 

it. 

  

Unit Testing: 

 Each individual unit will be exhaustively tested. However, parts with identical Verilog or 

schematic units will only be tested once. For example, not all muxes will be tested, but only one 

will be tested. Also, one register will be tested although 6 registers are needed. 

  



 

Unit Test Description 

Generic Register Test a normal write by reading the data back. 

Test the write enable by trying to clear the 

register by writing zero. Read the value again 

and compare. If the value is constant, it has 

passed.  

Block Memory Set a short address, write and then read. Try 

clearing by writing 0, but disable write 

enable. If passed, it should NOT be 0 

Set a long address write and then read. Try 

clearing and writing 0, but disable write 

enable.  If passed, it should NOT be 0 

Register File Test read and writing by writing all bits and 

reading them. Next, check if Write enable 

works by using the test described in generic 

register. 

MUX Attach a mux to 3 different values. Switch 

between them and check if the value at the 

output of the mux matches the expected value  

ALU Do one of each operation and check that it has 

the correct result. Check overflow detection 

by adding really big numbers. 

Control Will not be tested yet 

Zero Extender / Sign Extender Put a value on the input and compare the 

result of the output with the expected result 

 

Hardware Integration Plan 

The hardware integration will work in an “onion-like” design. Testing will start with 

individual components and gradually work to larger subsystems. The subsystems will be tested 

individually and then combined to larger sections of the completed datapath. The result will be 

the entire data path. The subsystems and correct tests are listed below. 

    A separate schematic was created for each test with a certain number of debug ports and 

ports to enter data directly into the path. Later, more complicated tests, incorporated a control 

module so the control did not have to be set manually. The Control module had been tested 

previously and was found to work correctly. Each subsystem will have it’s own schematic and 

subsequent tests will incorporate those schematics as independent symbols. Each section will not 

need to know exactly how that subsection functions, but it should expect a correct value will be 

placed at the output(s) of the schematic’s symbol.  

 Below is a diagram determining the testing regions and the tests that will be performed.



 

Figure 4- Above shows the different planned stages of testing



Sub-Section Descriptions  

 

Section Name Components Tested General Description 

A Inst Mem, MAINMem, 

Mux1,2, Addr 

Test InstMem and Main 

Mem combined and 

switching between them 

B1 RegFile Test selecting from different 

Address inputs and data 

inputs and read and write out 

of the register 

B2 KernFile Test selecting from different 

Address inputs and data 

inputs and read and write out 

of the register 

C RegFile, KernFile Test both B1 and B2 and 

select between the 2 Kernel 

Files and expect the result 

D A,B,C,Result,ALU Test reading out of the A,B,C 

registers and doing an 

operation in the ALU. Then 

store in Result 

E RegFile,KRegFile,A,B,C,ALU Reading in and out of the 

register files and into the 

ALU. Store into Result and 

back into a register  

F InstMem, MainMem, RegFile, 

KRegFile, A, B, C, ALU, 

Adder 

Test entire datapath 

Sub-Section Test Detailed Specification  

 

A. Test A 

1. This test assumes that a schematic has already been created 

i. Place a few dummy instructions into coe files for the Main Memory and 

Instruction Memory block memory symbols. 

ii. Place an address of a known instruction on the line and choose the output 

of the Instruction Memory. Check that the output value matches the 

expected value 

iii. Repeat step ii. for the Kernel Memory as well. 

B. Test B 

1. Test B1 

i. Run the following tests for RegFile independently 

ii. Write into the place specified by the selected MUX value. Repeat for all 

mux entries on ALL ports. 

iii. Next, test reading by cycling through all possible MUX values on ALL 

ports, simultaneously. 



iv. This test will not test read/write enable because that should be tested in the 

unit test module. 

2. Test B2 – This test extends B1 

i. Repeat B1 but for KRegFile 

C. Test – C 

i. B1 and B2, but select the correct output from the output mux. 

D. Test  –D  

i. Test the ALU by loading into A B, C and do an operation and put into 

result 

E. Test – E 

i. Combine C and D. 

F. Test -F 

i. Add E and the rest of the data path 

ii. Place test instructions and run the instruction and read the output. 

iii. There should be entire datapath now  

  



Finite State Diagram – General Control 
 

  



 

ALU Control Diagram  

 

Branch control:  

 Branching is determined by the main control unit. The control system reads the output of 

the zero bit and determines if it branches.  

Timing 
 

Total Cycles to run relprime: 949377 cycles 

Total Instructions: 46748 

Minimum period: 25.162ns 

Maximum frequency: 39.742MHz 

 

 

 

  

ALUOpCode Operation 

0x0 Left shift 

0x1 And 

0x2 Or 

0x3 Add 

0x4 Sub 

0x7 Pass Through A 

0x8 Pass Through B 

0x9 No Operation 

0xA Set less than (A < B) 



APPENDIX – DESIGN JOURNAL – ZACKERY PAINTER 
 

Zackery Painter Work Log 

Milestone 1: 

 

1-8-2020 – [ 2 hrs] Started to work on M1 and review last quarter’s design document. I started to 

find changes I wanted to make and start writing it down. 

1-11-2020 [4 hrs] Finish up writing the design journal for M1. Re-formatting last quarter’s 

journal and re-assembling the code based on the new instruction set I designed. I also went 

through and wrote the RTL for the new Ext-Type instructions  

• 11-17-2020 7:00- 10:00PM  

o Added commenting ability for the assembler. 

o Started working on the Kernel and switching between Kernel and User memory. 

o Added $kra (Kernel return address) to prevent tampering with ra 

o Added a register to capture the instruction that caused an interrupt 

o Added a hold register 

o Added a very simple memory manager layout 

▪ If address is < 0x1000 then choose inst mem. 

▪ If address is > 0xfff then “spoof” a system call to enable kernel memory 

mode and OR 0x0fff with the real address. For example INST[0x3fff] will 

actually be stored in KMEM[0x3fff] 

o Started to work on system call documentation (Not in design doc yet) 

o Define interrupt codes for the kernel. (Not in design doc yet) 

o Started making sure M2 is completed, review RTL start working on Multi-cycle 

FSM. 

▪ Start comparing created parts with what I had from last quarter to make 

sure I still have everything  

o Added an IDLE loop to kernel (Do nothing until we see an interrupt (Located at 

PC = 0x0) 

o Need to do:  

▪ Finish M2. 

▪ Get assembler to a better state (Multi-file / Kernel-level assembling) 

• Work on getting addresses handled better 

• Generating object files 

• Re-implement Human-readable and verify functions 

• Write assembling instructions for EXT type 

▪ Drawing up data path 

▪ Finish writing kernel 

• 11-18-2021 8:00-10:30PM 



o Removed following instructions (Memory manager will handle what they do) 

▪ KKM2IMM 

▪ IMM2KMM 

o Re-wrote RTL to closer match the layout of a multi-cycle datapath. 

▪ I didn’t test any of the new code because it is still the same as the last 

quarter, but I just re-wrote it. 

• 11-18-21 11:23-12:07 

o Added “Parts List” to the design document 

▪ Copied known good parts from the single cycle datapath from RHIPS 

▪ Added A, B, and Result registers to store between cycles. 

o Added the previous notes on RTL testing. (Will upload our testbench later) 

o Started working on a plan to verify Ext-Types 

o Started to work on control for this datapath 

o Added some control bit descriptions. (Need to finish still) 

• 11-19-2021 7:30-11:00 

o Started drawing a new multicycle datapath 

o Started working out control and logic. 

o (Need to implement branch logic and jump logic) 

o Start to go back and add components to the component list 

o I ended up re-making the entire parts list and control bit list 

o ****RE-IMPLEMENT BRANCH LOGIC!!!*** 

o Besides getting Branch/Jump logic implemented, M2 is done and I have a 

datapath 

o   

• 11-20-2021 3:15-4:54 

o I forgot my glasses so I didn’t get much done 

o Started working on implementing branch and jump logic 

o I submitted M2, then continued to work on the FSM diagram 

• 11-25-2021 10:30PM – 1:24 AM (1-25-2021) 

o Worked on finish up RTL (I forgot to log another day I worked a few hours on 

straightening it out) 

o Color coded cycles so it’s easy for me to distinguish.  

o Most instructions have almost identical RTL for the top half of the diagram. 

o Screenshot for this stage is below 

o  

o  



 

Figure 5- Screenshot for RTL on 1-25-2021 

• 1-26-2021 7:36PM – 2: AM ( ~6.5 hrs.) 

o Started to move along M3. I’m a bit behind. Hoping to make it up tonight 

o Finished the Datapath, had to go back and add a good amount of control bits 

o I realized I don’t have logic for hardware level interrupts.  

▪ I can add these later. I have support for software interrupts. 

o I’m going to either take out or copy over the RTL I have been working on for 

individual instructions. I have a full RTL, but not the individual one fixed in the 

documentation 

▪ This is complete now 

o Finished writing specs on Unit testing 

o Finished working on subsections 

▪ A-G 

o My implementation decisions: 

▪ I decided to break up the datapath based on the cycle that it would be 

completing as the full instruction. This allowed me to test fetching, decoding, 

executing, memory access, and various switching signals independent of each 

other. 

▪  The architecture design and the decision to include separate memory 

segments has created challenges that I might not otherwise have. For example, 



there are a large amount of muxes that will be required to simply switch 

between Kernel and User space. Additionally, the partial support for interrupts 

has greatly complicated the design as some addresses must be hard-coded into 

the processor (0x4, 0x7, etc.). This was needed to record PC, causes, etc. 

▪ Additionally, I decided to include a separate port for the immediate on the 

ALU because it allowed me to not have to compromise an A, B, or C input. I 

can switch to using it based on the ALUOpcode. I think I can make the 

ALUControl give up to 16 bits worth if instructions, as it does not have to 

directly correlate to the actual OpCode of the instruction. (It can’t because of 

the ext-code) 

o I still need to re-visit my components and testing for that. I think I have some old tests 

that should work fairly well. They proved to work well last quarter and most are basic 

enough for me to adapt here as well. (For unit tests) 

o I copied some old tests that I wrote last quarter. I did all the component and 

implementation testing last quarter so I know these work. I need to go back and re-

name them to match my design doc, but they’re all there. It’s rather late and I have 

registration in a few hours so  I am going to stop working for the night.  

• 1-31-2021 : 2:00-5:00 

o I re-wrote my Datapath and Memory Layout once again 

• 2-1-2021 : 1:00-4:00 5:00-6:00 

o Started working on FSM 

o I started implementing my plan, but ran into a weird error with the block memory. 

o I ended up fixing this by re-generating it until it worked 

• 2-1-2021-2-2-2021 : 11:00PM-1:05AM 

o I started implementing my first stage. Most tests are implemented. All passed! 

o I need to go back and fix some RTL and datapath from some errors I found while 

writing control, I have it fixed on paper, but I need to scan and upload still. 

o I will most likely implement Stage B(1,2) tomorrow if I have time. (The milestone 

won’t reflect that) 

o Currently Completed: 

▪ A – Yes 

▪ B1 – No 

▪ B2- No 

▪ C – No 

▪ D – No 

▪ E – No 

▪ F – No 

• 2-7-2021 3:55-6:30 10:15-3:00AM 

o Started re-doing datapath (Again) to facilitate errors I found while working on the 

implementation 

o I finished B1 and started B2 

o Finished B2.  

• 2-8-2021 9:00-11:00 



o I finished part C and started working on Part D 

▪ Including Kernel or Register selection bits (Address 0xD) 

• 2-8-2021 7:00-12:00AM 

o I had to change the design rules of the Zero Extender because Xilinx refused to 

simulate it anymore for some reason, even though it works in other places 

o I finished Test D. I’ll start on Test E soon. 

• 2-9-2021 10:11-2:00AM 

o Fixed some control bits and started re-doing the FSM 

o Finished the FSM diagram. 

• 2-10-2021 1:30 – 5:00 

o Finished Control 

o Tried to finish M5 before it was due. 

• 2-11-2021 7:00 – 3AM 

o I put the entire datapath together, but have not tested it yet, or updated my 

documentation. 

o I spent a good 15-20 minutes just getting the schematic to compile 

• 2-12-2021 6:30-?? 

o I found the issue with the garbage data ( It was an issue with the sign extender) 

o Fixed many other issues, especially with timing, 

o Still working on validating everything works 

• 2-14-20201 

o I forgot to record it today, but I did a lot of work on the datapath 

• 2-15-2021 

o Also forgot to do it today 

o But I finished the datapath and testing. Everything is done. 

o I started writing relprime 

• 2-16-2021 6:30-11:33 

o Keep debugging relprime 

o I also finished the assembler 

o I’m still figuring out what’s going on  

• 2-17-2021 12:00-3:45AM 

o I kept working on relprime.  

o Added a “dead” loop at address 0 of the coe file so that the processor stalled when 

started. 

o The control waits for a start signal then jumps to 0x4 (future will be kernel) then 0x15 

(user space) 

o Worked on various improvements to the assembler to automatically inject the 

“kernel” into the coe file 

o I have run it for a while and didn’t ever get a good result, It’s 4am though so I’m 

going to bed now. 

o I’ll debug it later. Here’s a screen shot of what my debug file from my assembler 

looks like 

o (slt is all zeros so it makes sense to just make a ton of those, it does nothing) 



o \ 



• 2-17-2021 –11-12, 2-5PM 

o Finally got relprime to run fully!! 

o Next, I will try to get timing done. 

o Probably won’t get it done before 5 

 

  



APPENDIX – TESTS 
 

Below is an example of the tests performed. 

 

  



APPENDIX – PROOF OF RESULTS 

 

Figure 6 - Waveform of final RelPrime and Kernel 


